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Object detection — overview

Object detection — applications

faces, people, pedestrians, hands, eyes, vehicles, road signs, traffic lights,

licence plates, airplanes, airfield objects, landmines, sport objects, ...
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Object detection — overview

Feature extraction approaches

Features representing physical quantities (high-level, domain-specific, “manually designed”)

©
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E.g. for face recognition: eyes spread, nose length, forehead-mouth distance, fringe,
glasses, gender, age, ethnicity, etc.

Sophisticated, refined features (computationally expensive).

May require many low-level techniques (edges, corners, blobs, color segmentation, etc.).
Fairly small feature sets for machine learning (~ 10?).

Applicable in recognition tasks (suitable image fragment given as input, numerous classes).
Not applicable in detection tasks (whole image as input, 2 classes: “target vs. non-target”).

Features representing simple geometric properties (low-level, “automatic”, “learned”)

Examples: raw pixels + PCA, LBP, Haar-like features, texture coding, bag of words, HOG,
moments (geometric, statistical, Fourier, Fourier-Mellin), neural networks (CNNs), etc.

Oriented towards simple description of shape (computationally cheap ... mostly).
Large feature sets at learning stage (~ 10%,10°) — “brute-force attack”.
Connection between simple features and classes might be unclear for designer.
Learning algorithm expected to select a subset of relevant features (~ 10%).
Applicable in recognition tasks. Only some applicable directly in detection tasks.
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Object detection — overview

Object detection — overview

Dense detection procedures have high computational demands
(e.g. ~ 10%*! image windows to be analyzed per frame, under 1s or less)
Procedure (sketch):
loop over several scales;
for each scale scan image with a sliding window;
for each window position: (1) extract features, (2) calculate classifier’s response.
Common repertoire: Haar-like features or HOG descriptor.
Features of windows extracted fast, in constant time — O(1) — owing to a computational
trick known as: integral image.
Number of operations does not depend on the number of pixels in given window.
Haar/HOG drawbacks: sometimes not accurate enough, rotationally dependent.




ct detection — overview

Constant-time computations

@ O(1) — the most attractive for a computer scientist, but rare . . .
@ Typically: amortized constant-time complexity.

@ hash tables, hash maps

@ Union-Find data structure

@ Haar-like features (Viola & Jones, 2001, 2004), HOG descriptor (Dalal & Triggs, 2005).




Object detection — overview

Cost of detection procedure

@ Cost (direct):

S-1 s s
Ny —aSwy +1 My —’wy +1
€] Z X as 3 Y S Y (n A WA Wy Cpofpy + 11 cd/f) , 1)
Pa’wy Ba’wy
5=0 —_

~—— =

no. of pixels
dx(s) dy(s)

1y X 1y, — image dimensions,
wy X wy — smallest size of sliding window,
S — number of scales, ¥ — window growing factor, § — window jumping ratio,
dx(s), dy(s) — window jumps for given scale,
n — number of selected features,
Cre/px — average cost of 1 feature extraction per pixel,
cq/f — average cost of classifier’s response per 1 feature.
@ Example:
nx = 640, 1, = 480,
wy = wy = 48, (smallest objects ~ 10% of image height)
§=8,a=12,5=0.05
n =500 (suppose it is sufficient for our targets)
Chojpr = Cayr = 10710, (optimistic)
— windows to be analyzed = 126 000 (neglecting roundings of window sizes and jumps)
— time ~ 33s.
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Object detection — overview

Ideas for improvements

@ Integral images (cumulants)
@ One or more integral images prepared once before detection procedure
(or possibly, before each scale scan — if scale-dependent).
9 Features extracted in constant time c, regardless of number of pixels in window.
@ Complexity reduced to:

5-1
@(Z ny — adwy + 11y —awy +1

B, farw, (n Ce+ 1 Cd/f)). (2

=0

© Classifiers cascade

@ Observation: positive windows constitute a very small fraction of all windows,

@ Classifier “split” into stages (layers), applying succesively more features.

@ Positive indication requires traversing all stages. Negative indication on any stage
stops further analysis.

@ Average number 7 of features per window much smaller than the total: (77 < n).

@ Complexity reduced to:

S-1
o an_aswx+1ny—aswy+1
pawy Baswy

(ﬁCﬁ, + ﬁcd/f)). (3)
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Object detection — overview

Integral images

Known examples:

@ ii(x,y) = Z Z i(j, k) — fast (constant-time) sums or averages of pixels,

1<j<x 1<ksy

Z i(x,y) = X, y2) - i =1y - iy -1 + @il -1y - 1)

X1 SX<X Y1 <Y<Y

@ ii(x,y) = Z Z iz(j,k) — fast (constant-time) variances of pixels,

1<j<x 1<k<y

@ ij(x,y) = Z Z v(j,k, 1) — fast (constant-time) angle votes in sections /=1, 2,... (HOG).

1<j<xl<ksy




Object detection — overview

Integral images

Known examples:

@ ii(x,y) = Z Z i(j, k) — fast (constant-time) sums or averages of pixels,

1<j<x 1<ksy

Y iy = i) - di-ly) - ity -1+ it -y - 1)

X1 SX<X Y1 <Y<Y

@ ii(x,y) = Z Z iz(j,k) — fast (constant-time) variances of pixels,

1<j<x 1<k<y
@ ij(x,y) = Z Z v(j,k, 1) — fast (constant-time) angle votes in sections /=1, 2,... (HOG).
1<j<x1<k<y
Our contributions — new repertoire of integral images and features:
@ fast (constant-time) Fourier moments (Klesk, 2017),
@ fast (constant-time) statistical moments (Klesk & Bera, 2018),
@ fast (constant-time) Zernike moments (Bera, Klesk, & Sychel, 2018).
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Orthogonal expansions

Inner product, norm, orthogonality

@ Inner product (for functions of one variable):

1
(g hy = fo @) dx. @

@ Norm (quadratic) induced by inner product:
1 1/2
I = Vg = [ g ©
@ Orthogonality — g and / are orthogonal, g L h, iff:
g h=0. 6)
@ Analogies to: vectors, Pythagorean theorem, law of cosines —

h
—h
llg = hI* = (g = h,g =) = lIgII* = 2(g, hy + IIhll*. @)
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Orthogonal expansions

Expansions

Let f be a function over [0, 1].
Let g0,81,82, - - - be orthogonal functions over [0, 1].
Suppose true is the following representation (expansion):

f(x) = cogo(x) + c181(x) + c282(x) + -+ -, ®)

where ¢ are some real coefficients.
@ What has to happen? ¢, =?
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Orthogonal expansions

Expansions

@ Letf be a function over [0, 1].
@ Letgo, 91,82, ... be orthogonal functions over [0, 1].
@ Suppose true is the following representation (expansion):

f(x) = cogo(x) + c181(x) + c282(x) + -+ -, ®)

where ¢ are some real coefficients.
@ What has to happen? ¢, =?

f=cogo+cig1+cagat

()
gk =f - Z Ci8;j (isolating expression with cy)
j=0
j#k
00
{8k, 8k) =<, 8k) — Z ¢ {8j, k) (taking inner product (-, g) sidewise)
]':[) N——
j#k 0
1
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Orthogonal expansions

Approximations in quadratic norm

Theorem 1 (“about the best approximation in quadratic norm”)

Let f bea functzon to be approximated and let gy, g1, . . .,gn form an orthogonal base. Suppose
f = CoQ0 + €181 + - - - + Cngn is an approximation of f. Then, ||f — f|| is minimum if and only if:

& = —{f, 8k)- (10)

IIg II?
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Orthogonal expansi

Approximations in quadratic norm

Proof 1 (by necessary condition of optimum):

) —
a—Cka—f” =0
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Orthogonal expansions

Approximations in quadratic norm

Proof 1 (by necessary condition of optimum):
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Orthogonal expansions

Approximations in quadratic norm

Proof 1 (by necessary condition of optimum):

9 —
Z=A1=0
]
E) SR . :
aT“f - E c]-g]-” =0 (squared norm can be observed instead of norm)
k ‘
j=0

a n n
(;—Ck<f - Z;‘ ¢8jif = Z ¢igj) =0
=0

j=




Orthogonal expansions

Approximations in quadratic norm

Proof 1 (by necessary condition of optimum):
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Orthogonal expansions
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Orthogonal expansions

Approximations in quadratic norm

Proof 1 (by necessary condition of optimum):

) —
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Orthogonal expansions

Approximations in quadratic norm

Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients dy, dy, ..., d, such
that for h = dogo + d1§1 + - - - + dugn we have: ||[f — K| < ||f — fII. Then:




Orthogonal expansions

Approximations in quadratic norm
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that for h = dogo + d1§1 + - - - + dugn we have: ||[f — K| < ||f — fII. Then:

IIf = HP < [If —f||2 (squared norms observed)




Orthogonal expansions

Approximations in quadratic norm

Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients dy, dy, ..., d, such
that for h = dogo + d1§1 + - - - + dugn we have: ||[f — K| < ||f — fII. Then:

IIf = n? < [If —j;ll2 (squared norms observed)
If —?*'?— h||2 < —ﬁlz (adding a suitable zero)




Orthogonal expansions

Approximations in quadratic norm

Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients dy, dy, ..., d, such
that for h = dogo + d1§1 + - - - + dugn we have: ||[f — K| < ||f — fII. Then:

IIf = n? < [If —j;ll2 (squared norms observed)
If —?*'?— h||2 < —ﬁlz (adding a suitable zero)

YA +26f ~F.F — ) +1F ~ h < AT




Orthogonal expansions

Approximations in quadratic norm

Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients dy, dy, ..., d, such
that for h = dogo + d1§1 + - - - + dugn we have: ||[f — K| < ||f — fII. Then:

IIf = HP < [If _}‘”z (squared norms observed)
If —?*'?— h||2 < —ﬁlz (adding a suitable zero)

YA +26f ~F.F — ) +1F ~ h < AT

It suffices to show that the error f —?and the difference of approximatorsf— h are orthogonal:
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Orthogonal expansions

Approximations in quadratic norm

Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients dy, dy, ..., d, such
that for h = dogo + d1§1 + - - - + dugn we have: ||[f — K| < ||f — fII. Then:

IIf = HP < [If _}‘”z (squared norms observed)
If —?*'?— h||2 < —ﬁlz (adding a suitable zero)

W~ + 26 ~F.f 1) +1If = P < JE~FI°
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Orthogonal expansions

Approximations in quadratic norm

Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients dy, dy, ..., d, such
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Haar wavelets and Haar-like features

Haar wavelets

@ Mother wavelet and descendants:
Y10 = Y(¥)
1, 0<x<1/2
) =1-1 1/2<x<1;  dp=¢@) ¢ =p@-1)
0, otherwise. i

Y30 = 0(Y) Ya1 = Yldr = 1) g = Pl —2) Y = Pldx - 3)

P B T
4 4 a

Uik =v@x-k,  j=12..;k=01,...,27 -1
@ Orthogonality:

VG k) # Lm) (i Pim) = fo 1 Yjk () 1m (x) dx = 0. 1n

@ Expansion of a function: B
f@)=co-1+ i /Z:l Gk jk(x). 12)

@ Coefficients: e
ok = 1/IljalP¢f, #’],k) co = {f, 1. (13)
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Haar wavelets and Haar-like features

Approximations by Haar wavelets

@ Example 1: f(x) = x.
@ Coefficients:

1 1t x
=— ,1):7fxdx:—
Hll\zg 1Jo 2




Haar wavelets and Haar-like features

Approximations by Haar wavelets

@ Example 1: f(x) = x.
@ Coefficients:

1 X
co = 1) = 7[ xdx = —
Hll\zg 2

1( 2 2/2 2
c y== f xdx+f (—x)dx|= =
™ oII2 Frow =y [ 0/2 172 2

1/2 212/2 1

oz 2hp 4




Haar wavelets and Haar-like features

Approximations by Haar wavelets

@ Example 1: f(x) = x.
@ Coefficients:

1 XZ
¢ = Hlnz(f )—7fxdx:?

1

1
2

0

1/2 2/2
dx f —x)dx|=
0= i ouzw“’) Uwz e ), Y X]
1 1/4
d:
€0 = s Hz(f Pa0) = 1/2[f0/4 xdx +

3/4
21 1”2<f¢21> UZU Xd“ 5

_M]
o

2
2

1/2 22/2
0/2 T2 1/2 -
1 (2|4
172 (? 0/4

1 (2P
m (?'2/4 N

1

4
2P 1
7'1/4):_g
2 (4/4 1
73/4)=77




Haar wavelets and Haar-like features

Approximations by Haar wavelets

@ Example 1: f(x) = x.
@ Coefficients:

o= n1n2<f kffl"dx:;g:%

1/2 2/2 22 222 1
A0 gy o||2<f Y1oh= Uwz xd“fm (’x"”] = Zlp The "1
0= n¢ AT U ::4“1“ f;f('x)dx] -1 (?2 ;2 - é':i) -3
oot o e [on)- 202
€30 = ”‘P 2 fos0) = 1% (fo/lfxdxﬁ- flzg(—x)dx] = llﬁ (% ;Z - %2 T:Z) = _%
1= nw Tgaaie f¥31) = % [E;B”“ E:(’x)d"] - % (% ZZ - % ZZ) = ’%
32 = ”‘P IZ fr30) = 11% (f;/gxdx+ f;;s(—x)dx] = llﬁ (Yzi ZZ - %'::Z) = _%
3= nw Tl I¥33) = i U(,ZS”X * E:(_")d"] - 171 (% ZZ - % iZ) %




Haar wavelets and Ha

ke features

Approximations by Haar wavelets

n = 0, features: 1

Example 1: f(x) =x

n =1, features: 2

n = 2, features: 4

1.0 10
0.8 0.8 :
06 06 74
04 04 74
02} 02 :
0.0 0.0
00 02 04 06 o 10 00 04 06 08 10 00 02 04 06 10
MAE: 1/4 MAE: 1/8 MAE: 1/16
n = 3, features: 8 n = 4, features: 16 n =5, features: 32
10 10 ~
= <
74 08 ,4" 08
< e P
06 < 06 A
- ~ %
< 7‘ .
04 < 04 A
< < -~
ol el
< 0of A~ 02 .
= < o
0.0 < 0.0 s
00 02 08 10 00 02 08 10 00 10



Haar wavelets and Haar-like features

Approximations by Haar wavelets

Example 2:  f(x) = sin(27mx) + 1/4 cos(4 - 2mx)

n = 0, features: 1

n =1, features: 2

n = 2, features: 4

10 10 10
05 05 05
/ \ / \ /
-05 -05 05
10 -10 -10
0.0 02 0.4 0.6 08 1.0 0.0 02 0.4 0.6 1.0 0.0 02 0.4 0.6 1.0
MAE: 0.6526 MAE: 0.3046 MAE: 0.3046
n = 3, features: 8 n = 4, features: 16 n =5, features: 32
w0 /\ w0 72“:S< w0 ;"’x&
05 05 05 7‘ *
— = - = ~ e
\ i Y f 7
-05 -05 S? 7[ -05
10 10 o ! 10 *...J‘H*h]{

02

08 1.0

0.4 06
MAE: 0.0795

0.4 0.6
MAE: 0.0400



Haar wavelets and Haar-like features

Role of expansions in detection / recognition

@ Apply coefficients of expansions as input information (features,
attributes) for detection / recognition tasks.

@ Objects from the same class (faces, people, road signs, etc.) should
exhibit certain similarities in their expansion coefficients.

ked with integral images 23/162
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Haar wavelets and Haar-like features

Haar wavelets (2D) — example

@ Orthogonal base generated product-wise:

l;l)j,k;l,m (xy) = lql)j,l<(3‘:)7~/)l,m(y)- (14)

@ Wavelet polynomial (of order 1) of two variables:

n 211 2-1q
feom=co-1+Y. Y Y Y Gy ~fGy), (15)
d=10<jl<d k=0 m=0
jHl=d

where (x,y) € [0,1] x [0,1].

@ Coefficients (of expansion / approximation):
Skt = LWkl ®F, Yjjamd, o= 4,1, (16)

where: (g,h) = fol fol g, h(x, y) dxdy, gI? =(g,8)-

acked with integral images 24/162
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Haar wavelets and Haar-like features

Haar wavelets (2D) — example

@ Term of order 0:

$0,000
@ Terms of order 1:

@ Terms of order 2:

@ Terms of order 3:

Uy




Haar wavelets and Haar-like features

Approximations by Haar wavelets (2D)

1 =0, features: 1 n =1, features: 3 1 =2, features: 8 1 =3, features: 20 1 = 4, features: 48

feats]\ﬁpxs 1.09-107* feats/pxs: 868 10 4 feats/pxs: 2171073 feat?\gaxsz 521-107
0.1288 AE: 0. [AE: 0.0976 [AE: 0.0851

n =5, features: 112 n = 6, features: 256 n =7, features: 576 n = 8, features: 1280 1 =9, features: 2816

feats/%xs: 0.0122 feats/%x 0.0278 feats/%xs 00625 feats/%xs 0. 1389 feats/ XS
MAE: 0.0768 0606 : 0. 0324
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Haar wavelets and Haar-like features

Fourier moments (2D)

@ Consider the following Fourier approximation:

}\(x,y): Z Z Cj,kezm(iﬂky) ~ f(x,y)

—n<j<n —n<k<n

where: (x,y) € [0,1] x [0, 1] and i is the imaginary unit, i? = —1.
@ Hermitian inner product:

1,1
(g, hy = f f g(x, Yh(x,y)dxdy. (upper bar denotes complex conjugate)
0 Jo

@ Norm: /(g,g) (=1 for Fourier base).

@ Coefficients — moments:

1 B
Cj/k:fo fof(x,y)e"zm(’”ky)dxdy.

17)

(18)




Haar wavelets and Haar-like features

Approximations by Fourier moments (2D)

1 =0, features: 1 n =1, features: 9 1 =2, features: 25 1 =3, features: 49 1 = 4, features: 81

feats]\ﬁpxs 1.09-107* .77 -107* feats/pxs: 2.71-107% feat?&zxs: 532-107 feat?\gaxsz 8.79-107
[AE: 0.0 AE: 0.0711

0.1288 A 1100 AE: 0.0923 795
n =5, features: 121 n = 6, features: 169 n = 7, features: 225 n = 8, features: 289 n =9, features: 361

feats/%xs: 0.0131 feats/%x 0.0183 feats/%xs: 0.0244 feals/%xs: 0.0314 feats/ xs: 0.0392
MAE: 0.0600 MAE: 0.0554 MAE: 0.0506 MAE: 0.0451 :0.0417




Haar wavelets and Haar-like features

Approximations: Haar (2D) vs. Fourier (2D)

features: 112 = 6, features: 256 n =7, features: 576 n = 8, features: 1280 =9, features: 2816

feats/%xs- 0.0122 feats/%x : 0.0278 feats/pxs: 0.0625 feats/pxs: 0.1389 feats/% : 0.3056
MAE: 0.0768 MAE: 0.0606 MAE: 0.0510 MAE: 0.0405 MAE: 0.0324

1 = 4, features: 81 =7, features: 225 n =11, features: 529 n =17, features: 1225 1 = 26, features: 2809

feats/pxs: 0.0574 feats/pxs: 0.1329 feats/%xs: 0.3048
MAE: 0.0380 MAE: 0.0297 MAE: 0.0240
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Haar wavelets and Haar-like features

Haar-like features (Viola & Jones, 2001)

@ Two-dimensional wavelet templates:
Uio(r) -1 (U0(7) = ¥2a(x)) - 1

Templates mapped to features by scaling and anchoring within detection window
(orthogonality can be neglected).

Features: differences in averages of pixel intesities under white and black regions
(rough contours).

Some of features might happen to represent good characteristics of targets.

GUCEEEREEE
EEIEEEI‘II‘E

na.

Intention: “brute force attack on features” — to generate a great multitude e.g. ~ 10°.
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Haar wavelets and Haar-like features

Integral image (repeated)

@ Image function: i(x, y) — pixel intensity at (x, y)
@ Integral image ii(x, y) defined as:

ity =YY il k). (20)

1j<x 1<k<y




Haar wavelets and Haar-like features

Integral image (repeated)

@ How (having prepared ii) to calculate the sum of intensities in a rectangle spanning from (x1,y1) to
(x2,42)?

i(x,y) =7 @1

X1 <X Y <SY<I2




Haar wavelets and Haar-like features

Growth of integral image

@ Constant-time calculation of a sum:

Y Y iy =ity it 1) — G,y - D+ -1 -1, (22)

X1 <X<X Y1 <YSY2

@ Sufficient are 3 operations on 4 points read from integral image array regardless of

rectangle size — O(1).
@ Analogy to calculus (growth of antiderivative / primitive function):

29 Y2
‘f flx,y)dxdy = F(xa,y2) — F(x1,y2) — F(x2,y1) + F(x2,42), (23)
X1 LAt

where F is antiderivative for f, thatis: F(x,y) = f - ﬂw f(u,v)dudo.
@ ‘edge features’ (Haar-like): 8 or 9 operations, “diagonal features”: 13 operations.
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relets and Haar-like features

Vizualization

» b o) 021/414

[by Adam Harvey, YouTube: https://www.youtube.com/watch?v=hPCTwxF0qf4]

al imag;



https://www.youtube.com/watch?v=hPCTwxF0qf4
https://www.youtube.com/watch?v=hPCTwxF0qf4

Haar wavelets and Haar-like features

Number of features — parameterization

@ Commonly, some parameterization is introduced using: scaling and positioning on
templates within window.

@ Let g denote the number of possible scalings along one dimension.
Hence, there exist 4> scaled versions for each template.

@ Let p generate a regular grid (2p — 1) X (2p — 1) of anchoring points for features.
@ Total number of features:

n(q,p) = 5¢°2p = 1)*. (24)
[*) Examples:
p=1|p=2|p=3 | p=4] p=5
= 5 45 125 245 405
= 20 180 500 980 | 1620
45 405 | 1125 | 2205 | 3645

80 720 2000 | 3920 | 6480
125 1125 | 3125 | 6125 | 10125

ESEESHASE RS
]
Q1 | Q| N =
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Haar wavelets and Haar-like features

Example of parameterization for: 4 =3,p =2
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@ Practical example: face detector (HFs)



Practical example: face detector (HFs)

Experimental setup

Train data: 7258 positive examples, 100 000 negative examples.
Learning algorithm: RealBoost + bins, ensemble sizes: T =256 or T = 512.
Test data: ~ 70500 000 windows within 500 images containing 1000 faces.

To conveniently generate ROCs a test subset generated with 2 - 10° negatives
— precision along FAR axis: 5-1077.

Feature spaces:

(1) g =3,p =3 (1125 feats.),

(2)g=4,p =3(2000 feats.),

(3) g =3,p=4(2205 feats.),

(4) g =4,p =4 (3920 feats.),

() g =5,p =5 (10125 feats.).

Train data sizes: from 0.5 GB to 4.3 GB

Detection procedure 1 (“heavy”): ~ 151000 windows
(8 scales, sliding window 48 x 48 up to 172 X 172, jumps ratio 0.05).

Detection procedure 2 (“light”): ~ 11000 windows
(4 scales, sliding window 120 x 120 up to 207 X 207, jumps ratio 0.05)

Software written in C# with key procedures in C++ as dll libraries.

gral images 38 /162




Practical example: face detector (HFs)

Examples of outcomes
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. €8
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]
]

P. Klesk (WPUT, Poland)

Fast object detection techniques backed with integral images 39/162
Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Practical example: face detector (HFs)

Examples of outcomes

40/162
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Practical example: face detector (HFs)
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Practical example: face detector (HFs)

Examples of outcomes (with errors)

P. Klesk (WPUT, Poland) Fast object detection techniques backed with integral images 42/162
Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Practical example: face detector (HFs)

Examples of outcomes (with errors)

gral images 43 /162




Practical example: face detector (HFs)

False alarms or faces?

P. Klesk (WPUT, Poland) Fast object detection techniques backed with integral images 44 /162
Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Practical example: face detector (HFs)

ROC curves

"FACES" ROCs (HAAR-LIKE FEATURES)

=

=

E

2

0.4 HFs: (1225) [3, 3]; RB+B: T=512,B = 8
0.31 HFs: (2000) [4, 3]; RB+B: T =512, B=8
o2l e HFs: (2205) [3, 4]; RB+B: T =512, B =8

: ——— HFs: (3920) [4, 4]; RB+B: T=512,B =8

0.11 ——— HFs: (10125) [5, 5]; RB+B: T =512,B =8
0.0

106 1075 1074 10-3 102 101 100

FAR




Practical example: face detector (HFs)

Accuracy measures

name / description

a=10"5

AUC,

a=10"*

a=10"3

sensiti-

vity

FAR

per
image

FAR

per
window

accuracy

per
window

HF g=3,p=3 (1125); T=512

0.6761

0.8123

0.9156

0.699

0.098

6.975-10~7

0.999995018084708

HF g=4, p=3 (2000); T=512

0.8021

0.9082

0.9624

0.849

0.086

6.121-10~7

0.999997238589628

HF g=3,p=4 (2205); T=512

0.7075

0.8376

0.9320

0.741

0.084

5.978.10~7

0.999995715550288

HF =4, p=4 (3920); T=512

0.8188

0.9141

0.9729

0.897

0.102

7.234-10~7

0.999997815602899

HEF ¢=5, p=5 (10125); T=512

0.9353

0.9793

0.9951

0.970

0.066

4.681-1077

0.999999106383004

gral images
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Practical example: face detector (HFs)

Time performance

“heavy” procedure “Tight” procedure

Haar-like features (T = 512)| Haar-like features (T = 512)
quantity (or operations) (495 distinct feats.) (495 distinct feats.)
no. of analyzed windows 151385 11838
preparation time for integral image 6ms 6ms
total time of detection procedure 513 ms 83 ms
time per 1 window 3.38 us (amortized: 3.34 us)| 7.01 us (amortized: 6.50 us)
time per 1 window and 1 feature |6.83 ns (amortized: 6.75ns) [14.16 ns (amortized: 13.14 ns)

[640 x 480 image; parallel computations on: Intel Xeon E3-1505M v5 4x2-core 2.80 (3.70) GHz CPU;]

[cascade of classifiers not used]
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

@ 3D images — C-scans — from GPR (Ground Penetrating Radar).

@ Coordinates: across track x along track X time. Image function: i(x, y, t).

@ Time axis can be inuitively associated with depth. Radar working in frequency domain —
time samples obtained from complex signals via IFFT.

@ Objects non-transparent to GPR generated hiperboloids in images.

@ R&D project by: (Olech, Kapruziak, Godziuk, Klesk, 2011-2014). In particular, research
on various 3D features computed via integral images: Haar-like features, statistical
moments, Fourier moments, HOG descriptor.

C-scan (thresholded)

detection window at s
1 close up and slices
scene before burial ( Y, t) (17’ 12, 398) P

X t
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)




Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

]

t=404 t=405 t=406 t=408 t=409 t=410 t=411 413 t:4’14 t=415
" X i g

Y

424 t=425 =426




Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

Proposition of 17 templates for 3D Haar-like features.

No. of features at learning stage: 17 000.

Train data based on 210 C-scans: ~ 7 GB (~ 100 000 examples of 3D windows).
Learning algorithm: boosted decision trees (shallow trees — 4 or 8 terminals).
Final calssifier (ensemble) consisting of 600 trees and thereby at most 1800 or 4 200
features (for 4 and 8 terminals, respectively).

0066066
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

@ Growth of integral image ii(x, y, t) based on 8 points:
Axl Y141 (ii)




Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)




Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

@ Example of plastic AT mine detection:




Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

@ Examples of relevant features in the first decision tree (within ensemble):
f%ature no. 8782

P(-), P(+)

Ty (-2.18)

00150297 000632502 00316797

Xgrgo < 9026

P(=), P(+)

00|
00222305 00012023 00246351

P(=), P(+)




Practical example: landmine detector (3D HFs)

Landmine detection — selected papers

ez

P. Klesk, M. Kapruziak, and B. Olech, “Fast Extraction of 3D Fourier
Moments via Multiple Integral Images: An Application to Antitank Mine
Detection in GPR C-Scans” in International Conference on Computer Vision
and Graphics (ICCVG), 2016, pp. 206-220.

P. Klesk, M. Kapruziak, and B. Olech, “Statistical moments calculated via
integral images in application to landmine detection from Ground
Penetrating Radar 3D scans”, Pattern Analysis and Applications, 2017,

pp- 1-14.

P. Klesk, A. Godziuk, M. Kapruziak, and B. Olech, “Fast analysis of
C-scans from ground penetrating radar via 3-D Haar-like features with
application to landmine detection”, IEEE Transactions on Geoscience and
Remote Sensing, vol. 53, no. 7, 2015, pp. 3996-4009.

P. Klesk, M. Kapruziak, and B. Olech, “A Comparison of Shallow Decision
Trees Under Real-Boost Procedure with Application to Landmine Detection
Using Ground Penetrating Radar” in International Conference on Artificial
Intelligence and Soft Computing (ICAISC), 2015, pp. 436-447.
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HOG descriptor

Histograms of Oriented Gradients

@ Idea described first in (Dalal & Triggs, 2005).

@ The technique observes orientations of local gradients present within cells of image
windows.

@ Gradient orientations (within [-7t/2, 1/2] or [0, 27t]) are dicretized.
@ Detection window partitioned into a regular grid of cells.

@ Each pixel “votes” within its cell for some orientation of gradient with vote strength
proportional to gradient magnitude anchored at that pixel.

@ Cells are grouped into larger blocks for normalization and mitigation of local image
constrasts.

@ Feature vector: concatenation of gradient distributions over all cells.

ked with integral images 59 /162
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HOG descriptor

HOG — examples for faces

@ Discretization of [0, 27t] into 1y = 8 intervals. Grid of cells: 5 x 3. Features: 120.

: 360.




HOG descriptor

HOG — examples for faces

@ Discretization of [0,27] into 1y = 8 intervals. Grid of cells: 9 x 5. Features: 360.
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@ Discretization of [0,27] into ng = 24 intervals. Grid of cells: 9 x 5. Features: 1080.
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HOG descriptor

HOG — face vs. non-face
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HOG descriptor
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@ Discretization of [0,27] into ng = 24 intervals. Grid: 21 X 13. Features: 6 552.

@ Visualization on a dense grid gradually resembles a face.
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HOG descriptor

HOG — examples for pedestrians

@ Discretization of [0, 27] into g = 24 intervals. Grid: 21 X 9. Features: 4536.




HOG descriptor

HOG — examples for pedestrians

@ Discretization of [0, 27] into g = 24 intervals. Grid: 21 X 9. Features: 4536.




HOG descriptor

HOG — examples for pedestrians

@ Discretization of [0, 27] into g = 24 intervals. Grid: 21 X 9. Features: 4536.




HOG descriptor

HOG — pedestrian vs. non-pedestrian




HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?

70/ 162




HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — how it works (1)

@ Convert image to grayscale.
@ Convolve image with simple gradient filters: h, = (-1,0,1), hy = (-1,0, 17T

ge=ixhy (25)
gy =1i*hy. (26)

@ Calculate gradient magnitude at each pixel (j, k) as:

G(j, k) = /8x2(, k) + 8,2, k). 27)

ked with integral images 74 /162
Poland)




HOG descriptor

HOG — how it works (2)

For each pixel find dominating angle 6(j, k).

There exist two possibilities of angle range to consider: [-7/2, /2] or [0, 2m).

Depends on whether we want to take into account or neglect where gradients are headed.
True gradients, within [0, 27), are headed from darker to lighter regions.

Angular ranges are implied by the choice of tangent arc function, i.e. tan™’:

0(j, k) = atan(gy(j, k)/gx(j, k), (28)

or

6, k) = atan2(gy (j, k), g+(j, k). 29)

acked with integral images 75/ 162
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HOG descriptor

HOG — how it works (3)

@ Individual values (for single pixels) of angles 6(j, k) and magnitudes G(j, k) can be
strongly variable, even for similar images.

Therefore, aggregations of 0(j, k) and G(j, k) are introduced over some rectangular
surroundings — cells.

This leads to a more stable description — robustness to small changes or noises.
Cell sizes (in pixels) are implied by the grid size.
Denser grids produce more features but become gradually more susceptible to noises.

Angular range is discretized into an imposed number 7y of equally wide intervals —
bins.

@ Each pixel “votes” for the bin to which its dominating angle 0(j, k) belongs,
proportionally to gradient magnitude: G(j, k).

@ Normalized sums of votes for particular cells form stable statistics, and thereby features.

ked with integral images 76 / 162
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HOG descriptor

HOG — how it works (4)

@ Let border angles be defined as:

¢
o

-1/2 + Imt/ng, 1=0,1,...,np; (30)
—n/n0+12n/n0, l:O,l,...,ng; (31)

respectively for [-71/2, /2] and [0, 27).

@ Hence, middle angles (representatives) in particular bins are:

(1 + ¢1-1)/2, I=1,...,np. (32)

@ In case of [0, 2m) range, the middle angle for the first bin coincides with horizontal axis.

@ “Circularity” of the angular axis should be taken into account (i.e: —7t/ng corresponds to
27 — 1t/ng).

77162




HOG descriptor

HOG — how it works (5)

@ A matrix of votes V of size n, X ny X ng is formulated:

G(j,k), when ¢;_; < 0(j,k) < ¢p;
0, otherwise.

V(G k1) = { (33)

@ Votes are summed and memorized seperately for each pair of cell c and bin (I = 1,...,ng):
Hieh =) 00 VikD. (34)

@ Final features H(c, I) of HOG descriptor are calculated from H; values by performing their
normalization over blocks of cells, i.e. cells being direct neighbours:

Hied) = Hie )] Y, v i@+, (35)

where: N(c) denotes the set of neighbours for a cell ¢, Hy(c) = (H 1(c,1),...,Hy(c, ng)),
€ > 0 is a selectable constant, and || - || denotes Euclidean norm.
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HOG descriptor

HOG — visualization of successive steps

@ Original image, image with gradients G(j, k), and image with angles 0(j, k):

@ Feature values H(c,I) over 9 x 5 grid (19 = 8):

For readability, imaging with negation of gray levels and sharpening.




HOG descriptor

HOG — visualization of successive steps

@ Final visualization — gradients of lengths H(c, I) are drawn along representative angles at
cell centers:




HOG descriptor

HOG — integral images

@ Question: Which computational step could be speeded up by integral images
within a detection procedure?




HOG descriptor

HOG — integral images

@ Answer: sums of votes within cells:

Hie =Y V(kI.

(ioec

@ For ng bins, one should introduce a set of ng integral images to cumulate votes:

iy =Y, Y, VGkD 1=1..n. (36)

1<j<x 1<k<y

@ Value Hi (c, ) for a cell ¢, spanning from (1 (c), y1(c)) to (x2(c), y2(c)), can be then calculated
as:

Hi(c, 1) = iy (x2(c), y2(c)) — ify (x1(c)—1, y2(c)) — ify (x2(c), y1(c)—1) + 7y (x1(c)—1, y2(c)-1) . (37)

@ Owing to integral images, extraction of each HOG feature becomes a constant-time
— O(1) — operation.

acked with integral images 82/162
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Boosting — variants and properties

Boosting as a meta algorithm

@ Sketch of idea appeared in paper: “The strength of weak learnability” (Schapire, 1990).

@ Successive important works, shaping the current form of boosting, were: (Freund, 1995;
Freund & Schapire, 1996, 1997; Friedman, Hastie, & Tibshirani, 2000;
Schapire & Singer, 1999).

@ Boosting applies sequentially a simple learning algorithm on reweighted data — each
training example has a weight which changes during successive boosting rounds.

@ In effect, we obtain an ensemble of partial classifiers, also referred to as weak classifiers
— “anything better than a coin toss will do”.

@ Final response of ensemble classifier for some input object is calculated as a majority vote
or a weighted sum from responses of weak classifiers.

@ Boosting algorithms appear to be well-suited for large data sets.

@ Important properties observed in practice:
(1) capability to automatically select relevant features,
(2) robustness to overfitting — as new weak classifiers are added to ensemble, test error
stabilizes (instead of increasing).

@ It can be demonstrated mathematically that boosting can be seen as an sequential
additive model for logistic regression.
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Boosting — variants and properties

Notation

Let D = {(x;, }/i)}i=l,.“,m denote the set of training examples, where x; = (x;1, X2, . .., Xin) are
feature vectors, and y; € {1, 1} are class labels.

Rounds (iterations) of boosting procedure shall be numbered ast =1,2,...,T.
Let w; denote the weight of i-th example on current boosting round.
In case it is needed, we shall write w;; to indicate the round index explicitly.

Weigths can be regarded as a probability distribution over data examples,
ie:w;>0and Y7, w; = 1.

Let f; denote a weak classifier produced on round ¢.
Let F denote the whole ensemble.

When observing progress of algorithm, let F; (with subindex) denote the current state of
ensemble on round ¢, i.e. ordinary or weighted sum of f1, f5, ..., f;. In this sense, notation
Fr is equivalent with F.

Let [s] denote an indicator function, yielding 1 when s is true and 0 otherwise.




Boosting — variants and properties | AdaBoost

Discrete AdaBoost

1: algorithm DiscreteAdaBoost(D)

2: start with weights: w; :=1/m, i=1,...,m

3 fort:=1,...,T repeat

4 fit weak classifier f;(x) € {~1, 1} using weights w; on training data
5: calculate train error:

6 € = L wilf(x) # yil

7 calculate classifier’s coefficient (importance):

8
9

ap = %log 1?—?
: update weights:
10: Zp = Y wiem il
11: w; = wie’“fﬁ("i)yi/Zf, i=1,...,m

12: return ensemble F(x) := Zthl aifi(x) with decision calculated as sgn F(x)




Boosting — variants and properties | AdaBoost

AdaBoost — data for experiments

@ Data drawn (i.i.d.) from joint probability distribution: P(x,y) = p(x)P(y|x).
@ p(x) — density of bivariate normal distribution N2(0, 1).

@ Conditional: P(y|x) =1/ (1 + eyﬁ(“z”lz”z)), wherer=1,5=5.

@ Train data (m = 1000 examples):

@ True error for some classifier ¢(x) € {-1,1}:

errp(c) = ﬁ ey €00 # Y1 PGP0 dx (38)

@ True error for optimal classifier c(x) = 2[x12 + xp% — 12 < 0] — 1 is ~ 0.084442.




Boosting — variants and properties | AdaBoost

AdaBoost + decision stumps (1)

@ Each weak classifier is based on a single selected feature and performs a thresholded
decision:

ford(xj —v) > 0;

39
otherwise; (39)

. 1,
ft(x/']/ o, d) = {_1

wherej € {1,...,n} — feature index, v € R — threshold, and d € {—1,1} — decision
direction.

@ Selection of a triplet (feature, threshold, direction) is typically carried out by minimization
of train error resulting from the split?:

m
(0", d) = argmin ) wilfi(x;;j,0,d) # yil. (40)
God) =1

Other approaches possible: maximum information gain, minimum Gini index




Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (2)

@ Final decision boundary for the ensemble (T = 100) and error plots:

classification error

@ True error: errp(F) ~ 0.092805.
@ Error of F on test sample (also containing 1000 examples): 0.080.
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Boosting — v

ants and properties

AdaBoost

AdaBoost + decision stumps (3)

@ Learning progress:

{w;} fort =1

fi

sgn Fy

{t;ffort =27 °

C_ SgnFa’

fw;Jfor t =37 ° !




Boosting — v

ants and properties | AdaBoost

AdaBoost + decision stumps (4)

@ Learning progress:

{w;} fort =4

fa sgnFy

> {wilfort =57

" fwitfort =67




Boosting — variants and properties | AdaBoost

AdaBoost + decision stumps (5)

@ Learning progress:

{w;) fort =7 f; sgnF

T Tor =8 T A S R T

1 L e Y .17




Boosting — variants and properties | AdaBoost

AdaBoost + decision stumps (6)

@ Learning progress (last rounds):
{w;} for t = 98 fo. sgn Fog

S N A A N 1Y )

{w;} for £ = 100




Boosting — variants and properties | AdaBoost

AdaBoost + random lines (1)

@ Weak classifiers: fi(x; ¢) = 2[co + c1x1 + c2x2 > 0] — 1 with random coefficients drawn from
ce[-1,1P.
@ Final decision boundary for the ensemble (T = 100) and error plots:

€t, , test error for F;

classification error

@ True error: errp(F) ~ 0.118755.
@ Error of F on test sample (also containing 1000 examples): 0.118.
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AdaBoost + random lines (2

@ Learning progress:

{w;} fort =1 fi sgnFy

C fwilfor =27 °

" wffor F=3"

Fast object det
6/01495 (Natios
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AdaBoost + random lines (3

@ Learning progress:

{w;} fort =4

> fwilfort =5 ° :

"l for F=6"

Fast object det
6/01495 (Natios
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AdaBoost + random lines (4)

@ Learning progress:

{w;} fort =7

> {wilfort=8" °

* fwffort =97 °
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AdaBoost + random lines (5)

@ Learning progress:

{w;} for t =10
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AdaBoost + random lines (6)

@ Learning progress (last rounds):
{w;} for t = 98

lwil for F=100__°
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AdaBoost — final remarks

@ Popular variants:

@ AdaBoost + decision stumps,

@ AdaBoost + decision trees,

@ AdaBoost + linear classifiers (e.g. SVM),
@ AdaBoost + naive Bayes.

@ “AdaBoost + decision stumps” variant is commonly synonymous with “Viola—Jones
AdaBoost”.

@ On asingle boosting round the choice of weak classifier (step 4) can be performed using
any error criterion (or even randomly).

@ Typically though, two approches are most popular:
(1) classification error minimization: arg minﬂ Y wilfi(x) # vil,

(2) exponential creterion minimization: argmin T, wiem i,

@ Optimal values for a; are motivated by the exponential errors Z;.

@ If for some weak classifier ¢; > 1/2 then the coefficient o; shall “negate” responses to
opposite ones.
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AdaBoost — properties

Demonstrate that:
e the choice a; = % log 1;—5‘ minimizes the exponential criterion Z;;

e Z; is equal to the ratio of exponential criterions on two consecutive rounds:

T o) [N v T afix)
Y L it /Ze W e, (1)

i=1 i=1

e train error for the ensemble F os upper-bounded by the product of Z; values:

m T
1
~ ;[sgnF(xi) #yil < H zi; (42)

g ... and thereby not greater than:
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RealBoost — initial remarks

@ Idea in: “Improved boosting using confidence-rated predictions”

(Schapire & Singer, 1999).

Full name: Real AdaBoost commonly shortened to RealBoost.

Essence: weak classifiers are real-valued (not binary), i.e.. fi(x) € R.

Response of a weak classifier is commonly set to approximate half the logit transform:

Puly = 1%)

= , (44)
pw(y = -1x)

fi(x) = % log

where P,, (v = +1|x) estimates class distributions conditional on x using current weights w;.
@ E.g., for “decision stumps” when considering a classifier f(x; j, v, d) we have:

w;, ford(x;—0v)<0;

{i: d(x;—v)<0, y=+1

Poly = £1lx;j,v,d) = (45)

wj, ford(x;—v)>0.
{i: d(xi/—v)>0, yi=%1}

@ In case of decision trees (applied as weak classifiers), each terminal produces its own
estimation of Py, (y = £1|x).
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RealBoost — initial remarks

@ Ensemble classifier is of form F(x) = ZrT=1 fi(x) with decision: sgn F(x).

@ One resigns from coefficients of weak classifiers — a; — that were present in Discrete
AdaBoost.

@ Instead, a weighing mechanism for classifiers is built in real-valued responses.

@ One can demonstrate that expression 1/21log (f’\w(y =1x) ﬁj\w = —lIx)) is the solution of
minimization of exponential criterion defined by distribution {w;} on data (on a sample).

@ Analogically, one can demonstrate that expression 1/2log (P(y =1lx) / Py = —1|x)) isa
solution of minimization of exponential criterion defined by the true uknown joint
distribution which generates data i.e. P(x,y) = p(x)P(y|x).

@ One can observe similaries between RealBoost and logistic regression.
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RealBoost

1: algorithm RealBoost(D)
2 start with weights: w; :=1/m,i=1,...,m.
3 fort:=1,...,T repeat
4 fit weak classifier f;(x) € R using weights w; on training data, so that f;
5: minimizes exponential criterion Y., w;e fr0ivi
6 or equivalently so that f; approximates half the logit transform:
7 fi(x) 1= 1/210g (Puly = 1) [Puly = ~11)).
8 update weights:
9 Zp = Y0 wie i,
10: w; = wie 1 |7, i=1,...,m

11: return ensemble F(x) := Z;Ll fi(x) with decision calculated as sgn F(x).
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RealBoost

RealBoost + decision stumps

@ Final decision boundary for the ensemble (T = 100) and error plots:

classification error

@ True error: errp(F) ~ 0.092465.

¢y, train error for Fy, test error for Fy
T T T

o
(%
=

pAN

NA\J\/\,/J\/\//

@ Error of F on test sample (also containing 1000 examples): 0.087.
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(RealBoost vs. AdaBoost) + decision stump

@ Learning progress (dashed curves for AdaBoost):

€y, train data for Fy, test data for F;

057

0.4

0.3

0.2

classification error

0.1
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RealBoost

(RealBoost vs. AdaBoost) + random lines

@ Final decision boundary for the ensemble (T = 100) and error plots:

classification error

@ True error: errp(F) ~ 0.0975283.

€4, train data for Fy, test data for F,

A

I
m \“\ \HM ,J

;
VAA MUAR MWV
[ \|

| U |

@ Error of F on test sample (also containing 1000 examples): 0.099.
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(RealBoost vs AdaBoost) + random lines

@ Learning progress (dashed curves for AdaBoost):

€¢, train error for Fy, test error for Fy

0.6

05

L e e |

0.4

0.3

classification error

0.2

0.1
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RealBoost + normals

@ Each weak classifier based on a single selected feature.
@ Performed are approximations of feature distributions conditional on classes
)2 /(202
(ley = #1) via normal distributions: pw(ley =+1)=1/ 27'[0 ¢ )/ Ofi).
@ Means and variances calculated as:

11

s X el Y ow me= Y Y w, 49

fi: yi=—1} {i: yi=-1} {i: y;=1} {i: y;i=1}
m m m
2 _ 2 2 _ 2 2
7= L w"u/ Z S o= Y we ) wimw. @)
{i:yi=—1} {i: y;=—1} {i: y;=—1} {i: y;=1)

@ By virtue of Bayes theorem, response of a weak classifier becomes:

Pojly = DPy(y = 1)

1
fis]) = 5 log = = (48)
Pw(xj*ly =-1Py(y =-1)
1 = (p—pjee)? - P,(y=1)
= 1 2021 - 2021 +log (;T+1ogj)ﬁ—_ (49)
= i+ ] w(y—_l)

where Py, (y=+1)= Y. y,=+1) wi and j" indicates feature with smallest exponential criterion.

ked with integral

Poland)



Boosting — variants and properties | Some weak classifiers

RealBoost + bins

@ Idea in (Rasolzadeh et al., 2006) — similar to RealBoost + normals, but conditional
distributions approximated via piecewise constant functions (of one variable)
implemented using bins.

@ Let [a1,a;] represents interval of some feature, and B denotes the imposed number of bins
(equally wide).

@ Index of bin B(x) € {1,..., B} that x belongs to is:

[B(x—a1)/(a—a1)] fora; <x<ap;
Bx) =41 for x < ay; (50)
B fora, < x.

@ Let fw(y=—1, jinsidebinb) = ¥j;. -, Bx)=b) Wi denote estimated probability of the

event that an example is negative and its j-th feature belonds to bin b.
@ Response of a weak classifier (using j*-th feature) is calculated as:

1. Py(y=1, insidebin f(x;))
fi(x7) = 5 log = — - .
Py (y = —1,j* inside bin ﬁ(x]-*))

(@)
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RealBoost + decision trees

@ Idea based on well known CART algorithm (Breiman, Friedman, Olshen, & Stone, 1984).

@ Practical experiments show that a set of shallow trees (obtained by boosting) typically
performs better than a single deep tree.

@ CART algorithm builds recursively a binary tree by splitting at each step a domain
fragment via a cut orthogonal to some axis (feature).

@ Choice of the best split (j, v) — pair: (feature index, threshold) — is carried out by
minimizing expected impurity of children.

@ Popular impurities: Gini index, entropy.
@ Tree terminals have real-valued responses equal to halves of the logit transform.

@ Therefore, they are also piecewise constant approximations (similarly to RealBoost +
bins) but of several variables (not univariate).
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RealBoost + decision trees

@ Consider a single step of recursion (for some tree node). Let {i} denotes only those indexes
of training examples that fall into the given node.
@ For each split (j, v) we need the following quantities:

W= Y, w, We=-LD= Y w, WesLD= ) w,

{i: xi]-<v} {i: Xjj<v, yi=—1} {i: Xjj<v, y;i=1}
WR = Y w, Wy=-LR= ) = w, WE=LR= Y w, (2
iz x;;>0} fiz x>0, yi=-1} fiz x>0, y;i=1}

where L and R denote left and right parts, respectively, resulting from the split.
@ Probability estimates related to above quantities are:

Py(L) = W(L)/ (W(L) + W(R)), Po(R) = W(R)/ (W(L) + W(R)),
Py(y=—1IL) = W(y=-1,L)/W(L), Pu(y=1IL) = W(y=1,L)/W(L),
Po(y=—1IR) = W(y=—1,R)/W(R), Py(y=1IR) = W(y=1,R)/W(R). (53)

[+ Expected impurity of children, e.g. for Gini index, becomes:
Po(L) (1-P2(y=—1L)~ P2 (y=11L)) +P(R) (1-P2(y=—1R)-P3(y=1IR)) . (54)

@ Each terminal returns: 1/21og(¥ ;. y,=1) Wi/ Li: y,=-1) Wi)-
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RealBoost — properties

Demonstrate that:
e expected value of exponential criterion:

Ep (770 = fx Zye[—l,l] e PO P(ylx)p(x) dx (55)
(with respect to true joint distribution P) attains its minimum for:
P(y = 1|x
F(x) = % log H; (56)
g by minimizing exponential criterion
"
Zi=) wie o (57)

i=1

in a greedy manner on each boosting round, one simultaneously minimizes that criterion
for the ensemble, i.e.:

m
=V o Fiyi (58)
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Logistic regression

@ A method for solving classification task via linear regression approach.

@ We want to “model” the conditional distribution P(y = 1|x) by applying somehow a linear
form ag +a1x1 + -+ + apxy.

@ Problem: probabilities are bounded to [0, 1], whereas expression ag + a1x1 + -+ - + 4,Xy, is
unbounded.

@ Trick: instead of probabilities one can approximate logarithmic odds ratio:

Ply = 11x)

08 1= PG=109" (59)
@ By solving equation
ap +ayxy + - +ayx, =lo M (60)
0 1X1 nXn gl—P(y=1|X)
with respect to P(y = 1[x), one obtains logistic function:

1

P(y =1lx) = (61)

1+ e—(a0+a1x1+~~+nnx,,)

(a.k.a. sigmoid function).
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Logistic regression

@ To solve logistic regression (to find ay, ..., a,) it is convenient to use y; € {0, 1} instead of
Yi € {—1 , 1}

@ To simplify notation denote P(y = 1|x) as p;(x;).

@ We build likelihood function:

L= [T poo% @ -po)' . (62)
i=1

@ Its maximum with respect to ag, . . ., a, is in the same place as the maximum of
log-likelihood:

logL = Z(yi logp(x;) + (1 —y;)log (1 — p(xi)))
i=1
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Connection: RealBoost ~ logistic regression

@ Consider expectation of exponential criterion taken with respect to true distribution P,
from which pairs (x, y) are drawn:

QP = Er(e ) = [ Y ety dx

X yel-1,1}

= f (Ply=—1x)e"™+P(y=11x)e~"™ )p(x) dx. (64)
X
@ We know that by demanding dQp(F)/dF = 0 one obtains solution:

F'(x) = 1/21og(P(y=1x)/P(y=-1}x)) (65)

(in fact, it suffices to minimize the inner expectation in (64) for conditional distribution
P(y = £1}Y)).

@ Note that F* is half the logit transform, typical for logistic regression.

@ If the learning algorithm was capable somehow of finding immediately (in one step) the
optimal function F* then the boosting procedure could be stopped after just one round.

@ In practice, weak classifiers are crude approximations of F*, therefore multiple rounds
are needed.
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Connection: RealBoost ~ logistic regression

@ Solving (65) with respect to P(y = 1|x) one obtains a form of sigmoid:
Py =1x) = W[ (1+2F®0) = 1/(1+20), (66)

— equivalent to logistic regression up to a constant factor of 2 in the exponent.

@ Logistic regression approximates F* by a linear model:
F'(x) = ag + a1xq + - - - + ayxy. (67)
@ RealBoost approximates F* by a linear combination of weak classifiers:
F(x) = A0 + - + fr(x), (68)

therefore by simple functions but possibly of multiple variables each.
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Connection: RealBoost ~ error residuals

@ Consider the technique of error residuals known from regression.

@ Using it, we sequentially build an additive model, where each successive fragment of
approximation “explains” some part of the target quantity and becomes subtracted from it,
so that the next fragments concentrate on error residuals.

@ Reweighing scheme in boosting works analogically to error residuals.
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Connection: RealBoost ~ error residuals

@ Suppose we have a partial model F and we want to update it to F := F +f.

@ Consider a population-based version of boosting (aware of distribution P).

@ For reweighing formulas based on data examples: Z = L Y e7¥if®), q; = ¢7¥if%) /7, we
can define their population-based counterparts pertaining to P:

2= [ Y e pmman W y) = plx y)e /2. (©9)
X yel-1,1}

@ Z works as a normalizing constant, but simultaneously Z = Qp(F) — optimization
criterion value for the model obtained so far.
@ Consider the value of criterion for F + f:

Qp(F+f) = f Y Ty, y) dx

X yef-1,1}
= [ X et /2 ax 20utf)- Qr(P 70)
xye{_llll —— ——

w(x,Y)

@ Conclusion: to minimize Qp(F + f) it suffices to greedily minimize Q,(f);
the current state of distribution w(x, y) indicates which places of target quantity are
already approximated well (“explained”) and which places still require approximation,
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Cascades of cl

Sketch of idea

@ Observation: negative windows are vast majority of all windows (commonly > 99.9%).

@ Therefore, it is worth to build simpler classifiers using fewer features serving to discard
negative windows faster.

@ Windows that appear promising (for positives) can be analyzed longer, using more
features.

@ A sequence of classifiers gets trained: F 1] , F%z, ..., forming a cascade — binary tree
degenerated to a list.

@ Sizes of successive classifiers in the cascaded form a non-decreasing sequence:
T1<Ty<....

@ Names for successive elements: stages, levels, layers.

@ Positive indication requires traversing all stages.

@ Negative indication on any stage stops further analysis.




Cascades of class

Scheme of cascade

,7 windows ™

1 ! recognized \
\ as positives /!
@ E.g.in (Viola & Jones, 2004): K = 32 stageswithT; =2,T, =5, T3 =--- = T5 = 20,

T6=T7=50,T8:~"=T12=1OO,T13:"‘=T32=200.

@ In total: 4297 features, on average ~ 8 features extracted per window.
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Final requirements and stage requirements

@ When training, one has to adjust decision thresholds 6, which influence stage decisions:
sgn (F]%k (x) — Gk), so that each stage has very high sensitivity (a.k.a. detection rate), for

example > 99.9%, and moderately small false alarm rate (1 specifity), for example
< 50%.

@ Letdy,dy,...,dx denote a sequence of sensitivities for successive cascade stages, and
ay,ay, . ..,4ax the corresponding sequence of FAR values.

@ Final sensitivity and FAR for the whole cascade are equal to:

K

D= H dy, 71)
k=1
K

A= H . (72)
k=1

@ Having imposed requirements for whole casced (i.e.. D, A), one can derive partial
requirements: dmin and amax for each stage.

@ Eg forD=098 A= 1072 and K = 10, it suffices that each stage satisfies d; > dmin = 0.998
(because 0.99810 > 0.98) and 4; < amax = 0.316 (because 0.3161Y < 1075).
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Cascade learning algorithm — remarks

@ User imposes wanted stage requirements: Armin, Amax-

Each stage is trained by a boosting algorithm (e.g. AdaBoost or RealBoost).

@ The number of classifiers for given stage is increased one-by-one until the stage satisfies
Amin, Amax-

@ Quantities d;, 4; (sensitivity, FAR) obtained at current stage are measured on a separate

validation set.

@ After each weak classifier is added, the decision threshold 6 becomes updated (typically
lowered), so that the wanted sensitivity is met: di > dmin. In consequence, this also
increases the observed FAR i.e. a.

@ The cascade is extended with new stages until the overall requirements D, A are met.

Remark 1: It is not clear if decision threshold updates do not worsen generalization capabilities.
Remark 2: Stop condition might not be reached.
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Cascade learning algorithm

1: algorithm TrainCascade(D, D, A, dmin, Amax, V) > V — validating set
2 distinguish positive and negative subsets in data: $, N within O
3 Dy:=1,A0:=1k:=0.
4 while Ay > A repeat > Ay — overall FAR for k initial stages
5: k:=k+1,Ty:=0, A := Ag_1, Fk .= 0. > subindexes 1""}“ skipped
6 while Ay > amax - Ag-1 repeat “
7 Te:=Tr+1
8 use P and N to fit new weak classifier f, obtaining F¥ := F¥ + f
9: update 6y for ensemble F¥, so that sensitivity for whole cascade is
10: Dy > dmin -Dy_4q, as follows: Ok = Fk((V+)L<1—dmin>-#’V+Jr
11: where F¥(V,) denotes sorted sequence of real-valued responses
12: of F¥ with respect to positive examples among V > by that we also increase Ay
13: execute current cascade (F1, F2, ..., F¥ ) on V to measure its Dy and Ax
14: if Ay > A then
15: N :=0.
16: execute current cascade (F!, F2, ..., F¥) on newly sampled windows
17: from negative images and add false alarms to N
18: otherwise
19: break

20: return cacscade (Fl,Fz, .. ,Fk).
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Towards new results

New repertoire of features / integral images

@ Fast Fourier moments (Klesk, 2017):

00y = Y. Y i Rcost kb, N y) = Y Y iGK)sinG - 5kt u).

1<j<x 1<ksy 1gj<x 1<ksy

(73)

(constant-time features; ~ 2 times slower than HFs; more accurate than HFs in face detection)
g Fast statistical moments (Klesk & Bera, 2018):

i (o y)= Y Y iR (74)

1<j<x 1<k<y

(CUIISfﬂ}lf*f!‘l”t’ﬁ'ﬂfll7’(’5,’ ~ 3 times slower than HFs)
e Fast Zernike moments (Bera, Klesk, & Sychel, 2018):

iy (%, ) = Z Z i(j, k)(k — ij)'(k + ij)*, where i2 = —1. (75)

1<j<x 1<k<y

(constant-time features; ~ 12 times slower than HFs; rotationally invariant)

In all cases, computations faster than definition-style computations by > 10° times.
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Towards new results Fourier moments

FMs backed with integral images

A technique for constant-time calculation of low order Fourier moments, applicable in
detection tasks.

Real and imaginary parts of moments can be used as features.
Technique based on a set of special integral images involving trigonometric terms.
Additional time invested in integral images amortized during detection.

Extraction of each feature requires 21 operations, regardless of detection window size and
position — O(1) calculation.

Experiments on face detection: Fourier moments vs. Haar-like features.




Towards new results Fourier moments

Fourier moments

@ Consider the following approximation, by a partial Fourier sum, of an image fragment
restricted to a rectangle spanning from (xq, y1) to (x2,2):

—X ¥
. kx,ky 2711( 1+kyN—) g
AR DD I L (76)

—n<ke<n —n<ky<n ’fz/yz

where: 1 — harmonic order of approximation, i = V-1 — imaginary unit, c — complex
coefficients, and Ny=x,—x1+1, Ny=y,~y;+1 — rectangle widths in pixels.

@ Best coefficients — the moments are:

R S M etk ) 77

X1.41

N.
X242 Y << v <Y<y




Towards new results Fourier moments

Proposition
@ We introduce two sets of integral images:

Lk Ky kx Ky
Heos ’ sin ’

Nx,Ny Nx,Ny
constructed as:

ke k kyj kyj

Cosy (x,y) = Z Z z(]v,]y)cos( ( x %)), (78)

NxN; 1<jr<x 15jy<y x y

k

kx,k ]

iy, Y (x,y) = Z Z iz, jy) sm( ( x]x If]y)) (79)
Nx,Ny 1<y <x 1y <y ¥

where indexes (ky, ky) iterate over

<ke<=1,-n <k, <nfU{0,k): —n <ky<-1}U{(0,0)}. (80)

(e, ky): =
@ Each integral image can be calculated in linear time with respect to image size (induction)
@ Define the growth operator for any integral image from {iicos} or {iigin}:
81)

Ay (i) = 1i(xa, y2) = 1i(xy = 1, y2) = #i(x2, y1 = 1) +iix1 = Ly = 1)

X242
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Towards new results Fourier moments

Proposition

Suppose the two sets of integral images {ulc(osk v }, { ’;;ky } defined as in (78) and (79), have been

Nx,Ny Nx,Ny
calculated prior to the detection procedure. Then, for any rectangle of widths Ny, Ny in the image, the real
and imaginary parts of each of its Fourier moments can be calculated in constant time — O(1) — as

follows:

Ky 1 kexr  kyn ey . kxxl yyl Juky
= n)| = 2n|—— + || A - 2 A )
i) o« R 5, ) - omfon (52 56 )

X2,Y2 Nx,Ny
(82)
keky 1 (. kxxq kyyl ek k1 kyyl ok
Im|c. )} |= (sm(Zrc( Axy ;i (fices” )+ cos|2m Axyy )
{ﬁiﬁ%] NxNy N: Ny x;,yi( Ch‘ff,w) Nx Ny x;yi( ?v'?,Ny)
(83)

[in total 21 operations: 8 additions/subtractions, 8 multiplications, 3 divisions, and 2 trigonometric]




rards new results Fourier moments

Proposition

Proof: Rewrite the moments using Euler’s identity —

vk y%l)) +isin (—27‘( (kx XN + kyy h ))) (84)

ke Ky 1 . x -
CX;C ,yyl = Z Z i(x, y)(cos (—Zn (kx N ’
242

Ny XSS Y1 Yy

Part the argument of the trigonometric functions into a group of terms independent from the pixel index (x, y) and a group
dependent on it as follows:

a =27 (kexy /Nx + kyy1 /Ny), Bx, ) = =27 (kex/Nx + kyy/Ny)

Apply in (84) the trigonometric identities for cos(a + ) and sin(a + ). Simultaneously, pull terms cos & and sin a in front of
summations — independent of the pixel index (x,y). Finally, split the expression into real and imaginary parts:

Fex K 1
Re [c(; ,yyl ] A N (cos @ Z"l <x<y i(x,y) cos B(x, y) — sina Z"l <x<ny i(x, y) sin B(x, y j))
X242

Y1<YsY2 Y1<Ysy2
e ky K ky
Ay 1 \icos Axp (”sin
X242 " Nx.Ny X242 Nx,Ny

Fex K 1
Im [Cxi'y‘d NNy (Sll’l(le1 <x<x, i(X, ) cos (x, y)+cosa2x1 <x<x, i(x,y) sinf(x, y))

X2 V1<y<h2 V1<y<h2
ex ky Kk Ky
Axyn (”cos Axl/yl( sin
%42 " Nx,Ny %242 " Ny,Ny

Underbraces show how the expensive summations over pixels get replaced by constant-time growths of integratimages: m
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Producing more features

@ Constant-time extraction owed to additional costs invested in integral images.
@ Needed number of integral images: (2n + 1) + 1, since both iicys, iisi, are required for
each ky, ky pair — potentially expensive, hence low harmonic orders (e.g. n = 1,2, 3).

@ We partition windows into regular p X p grids of rectangles:

original 4(p=1 =5(p=1) =6(p=1)
96 X 96 features 81 features 121 features 169

feats/pxs: 0.0088  feats/pxs: 0.0131  feats/pxs: 0.0183
MAE: 0.0711 MAE: 0.0600 MAE: 0.0554

original n=0(p=7) n=1(p=7) n=2(p=7)
96 x 96 features: 49 features: 441 features: 1225

feats/pxs: 0.0059  feats/pxs: 0.0533  feats/pxs: 0.1479
MAE: 0.0833 MAE: 0.0496 MAE: 0.0377

7(p=1)
features 225

feats/pxs: 0.0244
MAE: 0.0506

n=3p=7)
features: 2401

feats/pxs: 0.2899
MAE: 0.0305

@ Features extracted from each rectangle — piecewise Fourier approximation.

@ Total number of features: d(n,p) = (21 + 1)2p?.
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Experimental setup

Four variants of Fourier-based face detectors:

(1) n=2,p =5 (625 feats.),

(2)n=2,p=7 (1225 feats.),

(3)n =3,p =5 (1225 feats.),

(4) n =3,p =7 (2401 feats.)

Haar-like opponents (5 templates, g scales per axis, same grid sizes):

(1) g =3,p =5 (1125 feats.),

(2)q=3,p=7(2000 feats.),

(3)q=4,p=5(2205 feats.),

(4)q=4,p=7 (3920 feats.)

Train data: 7258 positive examples, 100 000 negative examples.

Learning algorithm: RealBoost + bins, ensemble sizes: T = 256 or T = 512.
Test data: 70252 859 windows within 500 images containing 1000 faces.

To conveniently generate ROCs a test subset generated with 2 - 10° negatives
— precision along FAR axis: 5-1077.

Detection procedure 1 (“heavy”): ~ 151000 windows

(8 scales, sliding window 48 x 48 up to 172 X 172, jumps ratio 0.05).
Detection procedure 2 (“light”): ~ 11000 windows

(4 scales, sliding window 120 x 120 up to 207 x 207, jumps ratio 0.05)
Software written in C# with key procedures in C++ as dll libraries.
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Examples of outcomes (Fourier moments)
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Examples of outcomes (Fourier moments)
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Examples of outcomes (Fourier moments)
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Examples of false alarms
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Some examples FMs vs. HFs (errors)

Fourier Moments (FMs Haar-like Features (HFs
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Some examples FMs vs. HFs (errors)

Fourier Moments (FMs) Haar-like Features (HFs)
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Some examples FMs vs. HFs (errors)

Fourier Moments (FMs) Haar-like Features (HFs)
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ROC curves

ROCS: FM (625) vs. HF (1125) 10 ROCS: FM (1225) vs. HF (2000)
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Accuracy measures

Fourier moments

name / description

a=10"

AUC,

a=10"*

a=10"3

sensiti-

vity

FAR

per
image

FAR

per
window

accuracy

per
window

HF ¢=3, p=5 (1125); T=512

0.6761

0.8123

0.9156

0.699

0.098

6.975:1077

0.999995018084708

FM n=2,p=5 (625); T=512

0.8401

0.9236

0.97144

0.889

0.092

6.548-1077

0.999997765249097

HF g=4, p=5 (2000); T=512

0.8021

0.9082

0.9624

0.849

0.086

6.121-10~7

0.999997238589628

FM n=3, p=5 (1225); T=512

0.8475

0.9285

0.9703

0.872

0.054

3.843-1077

0.999997793717795

HF =3, p=7 (2205); T=512

0.7075

0.8376

0.9320

0.741

0.084

59781077

0.999995715550288

FM n=2, p=7 (1225); T=512

0.8800

0.9480

0.9826

0.924

0.058

4.128-10~7

0.999998505420626

HF g=4, p=7 (3920); T=512

0.8188

0.9141

0.9729

0.897

0.102

7.234.10~7

0.999997815602899

FM n=3, p=7 (2401); T=512

0.8965

0.9538

0.9845

0.951

0.062

43971077

0.999998865248259
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Time performance — “heavy” procedure

Fourier moments (T = 512) [Haar-like features (T = 512)
quantity (or operations) (456 distinct feats.) (472 distinct feats.)
no. of analyzed windows 151385 151385
400
no. of prepared integral images (50 images per each of 8 scales) 1
preparation time for integral images 421 ms 6ms
preparation time per 1 integral image 1.05ms 6ms
total time of detection procedure 1190 ms 513 ms
time per 1 window 7.86 us (amortized: 5.08 us) |3.38 us (amortized: 3.34 us)
time per 1 window and 1 feature 17.59 ns (amortized: 11.36ns) |6.83 ns (amortized: 6.75ns)

[640 x 480 image; parallel computations on: Intel Xeon E3-1505M v5 4x2-core 2.80 (3.70) GHz CPU;]

[cascade of classifiers not used]

ked with integral

Poland)
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Time performance — “light” procedure

Fourier moments (T = 512) [ Haar-like features (T = 512)
quantity (or operations) (456 distinct feats.) (472 distinct feats.)
no. of analyzed windows 11838 11838

200

no. of prepared integral images (50 images per each of 4 scales) 1
preparation time for integral images 219ms 6ms
preparation time per 1 integral image 1.10ms 6ms
total time of detection procedure 308 ms 83 ms
time per 1 window 26.02 us (amortized: 7.52 us) | 7.01 us (amortized: 6.50 us)
time per 1 window and 1 feature 58.21ns (amortized: 16.82ns) |14.16 ns (amortized: 13.14 ns)

[640 x 480 image; parallel computations on: Intel Xeon E3-1505M v5 4x2-core 2.80 (3.70) GHz CPU;]

[cascade of classifiers not used]

ked with integral images 145 /162
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FMs — conclusions

0 Algorithmic result for detection tasks: a computational technique for constant-time
extraction of low order Fourier moments, based on special integral images.

g Experiments have shown that fairly small sets of Fourier-based features can surpass
Haar-like features in terms of accuracy in face detection task.

e Approach can be beneficial in machine learning applications where accuracy is of
primary importance rather than real-time (e.g.: medical diagnosis, image-based fault
detection, landmine detection) .

e Real-time could be achieved with: cascade of classifiers + more parallelism (e.g. more
CPU cores) to prepare integral images.
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Paper on constant-time Zernike Moments

@ A. Bera, P. Klesk, and D. Sychel: “Constant-time Calculation of Zernike Moments for
Detection with Rotational Invariance”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
DOI: 10.1109/TPAMI.2018.2803828, ISSN: 0162-8828, 2018.

Constant.time Calculation of Zernike Moments
for Detection with Rotational Invariance

P L]
e Popo O30

@ Impact Factor: 8.3, #1-ranked journal

Computer Vision and Pattern Recognition (1/66),
Computational Theory and Mathematics (1/97),
PATTERN ANALYSIS AND  Software (1367,

rtificial Intelligence (1/152),
MACHINE INTELLIGENCE Applied Mathematics (1/398)

@) IEEE TRANSACTIONS ON

ked with integral images 147 /162
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High-level intuition — scenario A

Scenario A: standalone detector invariant to rotation

TRAIN L TEST .
postives upright generalization onto any rotation angle (360°)

+45° random rotations:

test input image

complex-valued

integral images

I dion

negatives: procedure
. u (constant-time
features invariant
. to rotation
based on ZMs)

b

machine learning — detector (red) after postprocessing (grouping)
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High-level intuition — scenario B

Scenario B: prescreener invariant to rotation + angle-dependent classifiers

TRAIN
positives upright

+45° random rotations:

LRk
[EI

EI=r
£

negatives:

L
E."lﬂl_

machine learning —

TEST
generalization onto any rotation angle (360°)

test input image

complex-valued

integral images

detection
procedure
(constant-time
features invariant
to rotation
based on ZMs)

b

prescreener (gray) +angle-dependent classifs. (gray—red) after postprocessing (grouping)
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Zernike polynomials and moments

@ Zernike polynomials (ZPs): set of orthogonal, complex-valued functions over unit disk
in polar coordinates (F. Zernike, 1934).

@ Products of: standard polynomials over radius and harmonic terms over angle.

@ Obtained via G-S orthogonalization for: {1, rei0, 12 126210 13010 13,310 44 14,20 LA44i0 g

Re Voo Im Voo
Vp,q (r,0) = Rp,q (T)Fq(e)
(—lah/2 Re Vi l:"l\‘
_ —2s igO
- ﬁP:’/]:Srp e ’ 1!‘1 Re Vas lmvm Im Voo
=0
: ®0 o0
where Re Vs, Re Vis Im Vg, Im Vig
>N _ B
(~1)5(p - 9)! o0 @
ﬁp,t],s - . Re Vio Re Vis Re Vig I.n\m%?m
s ((p+9)/2-9)! ((p - 9)/2 - ) 009 (X X ]
Re Vi Re Vag Re Vig Im Vs; Im Vs Tm V
CX X ) X
Rei"w Re Vg2 Re Viu Re Vg Im Vgo Im Vg Im Vg Im Vg
X X X X X T
Re Vo1 Re Viz Re Vo5 Re Vir Im Vi, Im Vi Im Vo5 Im Voz

000S 0006s
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Zernike polynomials and moments

@ Zernike moments (ZMs): coefficients of expansion (of function / image) in terms of ZPs.

i(r, 0) = Z Z, My, V(1 0) = Z Z My, Vy(r,0)  (85)

0<p<oo —p<qsp 0<p<p — min{p,p}<g<min{p,o}
p—lgl even p—lgl even
original p=0=10 p=0=20 p=p0p=40

@ Optimal coefficients — ZMs:

p+ 1 21 1 .
M,, = —— i r, 0 Srp—Zse—lq()rdr d6.  (moduli invariant to rotation) 86
PAa P o N PA;

—pP<qsp
p—lql even
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Zernike moments for image windows

@ Discrete version of ZMs for image window of size w X w:

—~ 2(p+1)
M2p+0,2q+o X M2p+a,2q+o = Z Z (/ k) Z .BZero 2+0,p— SO + 1y])s q(xk - ly )s+q+o
rw 0<j<w—1 2g+0<2s+0<2p+o0
O<k<w—1

(87)
2k—(w-1) w—1- _
w2 Y= \/> ! k] w-1.

@ Can ZMs be backed with mtegml images and applied in a detection procedure?

where: x =

global j, k local Cartesian and polar
k coordinate system
(0,0 —F 5
y
(os ko) v
J r
image n, x 1, window w X w (ny —1n, 1)
ko<k<ko+w-1
Jo<j<jotw—1

@ Is it possible to design such cumulants in the single global system of Cartesian
coordinates that shall later allow for extracting features (invariant to rotation) in many
local systems of polar coordinates at the level of each window?
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ZMs — our main result

Suppose a set of integral images {iitlu }, defined as in (75), has been prepared prior to the detection
procedure. Then, for any square window in the image, each of its Zernike moments can be calculated in
constant time — O(1), regardless of the number of pixels in the window, as follows:

— 4p+20+2 vay
M2p+a,2q+a = —lez Z ,82p+o,2q+o,pfs ?
2q+0<2s+0<2p+0
o (s—q O fs+q+0
: ( ; )(_kc + i) T 2( )(—kc — 1) A (i), (88)
=0 = U Jodotw-1

ko kg+w—1

where w denotes the width and (jc, k) the central index of the window.
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Experimental setup

Typical settings:
@ Learning algorithm: RealBoost + bins or RealBoost + decision trees.
Detectors: ensembles of 256 or 512 classifiers.
Training set sizes: ~ 10000 positives, 100 000 negatives.
Training duration: ~ 2h to 6 h.
Image / video resolution: 640 x 480.

Detection procedure (heavy): ~ 151000 windows
(8 scales, sliding window 48 x 48 up to 172 X 172, jumps ratio 0.05).

@ Detection procedure (light): ~ 11000 windows
(4 scales, sliding window 120 X 120 up to 207 x 207, jumps ratio 0.05).

@ Software: C# and C++ (crucial computational procedures as dlls).
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“Synthetic airplanes”

[ ZMs (220)[7,7,6], B =8, T = 256 |
|quantity (or operations) [ time or amount |
ino. of analyzed windows 150 849
total time of detection procedure 847 ms
[no. of prepared integral images 20
[preparation time of all integral images
. (complex-valued) 106 ms
0.079 ZMs: (144) (6, 6, 5]; [preparation time per 1 integral image 5.3ms
0.976 2ZMs: (176) [6, 6, 61: time per 1 window 5.615 s (amortized: 4.912 pis)
——————— ZMs: (180) [7, 7, 5I; —
0.973 ZMs: (220) (7. 7. 61; ITO. of dlsnnc.l features used by ensemble] 21.9
0.970 time per 1 window and 1 feature 25.64 ns (amortized: 22.43 ns)!
10°° 107° 107* 1073 1072 107t 10°

FAR

“Synthetic airplanes”: time performance for a 640 x 480 image

(parallel computations on: Intel Xeon E5-2699 v4 CPU, 22/44 c/t, 55 MB cache).

P. Klesk (WPUT, Poland) Fast object detection techniques backed wi tegral images

Research project no.: 2016/21/ /01495 (National Science Centre, Poland)
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“Letter A”

e ¢ > %
‘; ca ¥
i (b

it
by

\Ji‘f

¥ i
"LETTER A" ROCs

1.00 ZMs (540) [10,10,8], B=8, T = 512 |
0.97 |quantity (or operations) | time or amount |
0.94 ino. of analyzed windows 18588

= 0.91 [fotal time of detection procedure 289 ms

S 088 Ino. of prepared integral images 25

o085 [preparation time of all integral images

z

yosz ZMs: (176) [6, 6, 6]; RB+DT: T = 512, B = 8 (complexvalued) - 1328 me
0.79 IMe: (275 [6. 6. O] RB4DT: T = 512 B = 8 [preparation time per 1 integral image 531 ms
076 ... ZMs: (375) (8. 8, 81, READT: T = 512 B = & time per 1 window 15.5 is (amortized: 842 is)
0.73 ZMs: (540) [10, 10, 8]; RB+DT: T = 512, B = 8 no. of distinct features used by ensemble 375
0.70 time per 1 window and 1 feature 41.46 ns (amortized: 22.45 ns)|

107 107* 1073 1072 107t 10°
FAR

“Letter A”: time performance for a 640 x 480 image

(parallel computations on: Intel Xeon E5-2699 v4 CPU, 22/44 c/t, 55 MB cache).
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"FACES" ROCs

1.0

0.9 -

08

0.7
E 0.6
=
£os
go4 ZMs: (616) [13, 13, 6]; RB+DT: T=512,8=8

03{— (441) [12, 12, 5]; RB+DT: T =512, B

0.2

ZMs: (840) [13, 13, 8]; RB+DT: T =512, B = 16
0.1 —-——- HFs: (10125) [90+11.25]; RB+B: T = 512,B = 8
o 107° 107 107 1073 1072 1071 10°
FAR
[ ZMs (840) [13,13,8], B = 16, T = 512 |
[quantity or operations) [ time or amount ]
[no. of analyzed windows 150849
total time of detection procedure 2543 ms
[no- of prepared integral images 56
[preparation ime of all integral Images
(complex-valued) 263ms
[preparation time per 1 integral image 17ms
time per 1 window 16.86 s (amortized: 15.11 j1s)
[no- of distinct features used by ensemble E
[time per 1 window and 1 feature [50.93ns 45,66 1s)|
total time of 16 angular classifiers [ 94 ms
Vs
16 complete scans with HFs (1025), B = 8, T = 512

[no. of analyzed windows in total 2413584
fotal time 16 detection procedures 4752ms
[preparation time of 1 integral image 6ms
time per 1 detection procedure 297 ms
ftime per 1 window 1.97 s
[average no. of distinct features used by ensemble| 195
time per 1 window and 1 feature 398ns

(WPUT, Pol. Fast object detection techniques backed with integral images

Research project no.: 2016 01495 (National S ntre, Poland)
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“Road sign”
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ZMs — conclusions

o
o
o
o
o

Algorithmic result for detection tasks: a computational technique for constant-time
extraction of Zernike moments, backed with complex-valued integral images.

Suitable for detection procedures where rotational invariance is a requirement.

Proposed additional refinements: complex-conjugacy of integral images, speed-up
possibilities using LUTs.

Equivalent representation for Fourier-Mellin moments not feasible.

Future work: analysis of numerical errors, product invariants of form: M’;/q -M, s,
kq+s=0.
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