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Object detection — overview

Object detection — applications

faces, people, pedestrians, hands, eyes, vehicles, road signs, traffic lights,

licence plates, airplanes, airfield objects, landmines, sport objects, . . .
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Object detection — overview

Feature extraction approaches

Features representing physical quantities (high-level, domain-specific, “manually designed”)

E.g. for face recognition: eyes spread, nose length, forehead–mouth distance, fringe,
glasses, gender, age, ethnicity, etc.

Sophisticated, refined features (computationally expensive).

May require many low-level techniques (edges, corners, blobs, color segmentation, etc.).

Fairly small feature sets for machine learning (∼ 102).

Applicable in recognition tasks (suitable image fragment given as input, numerous classes).

Not applicable in detection tasks (whole image as input, 2 classes: “target vs. non-target”).

Features representing simple geometric properties (low-level, “automatic”, “learned”)

Examples: raw pixels + PCA, LBP, Haar-like features, texture coding, bag of words, HOG,
moments (geometric, statistical, Fourier, Fourier–Mellin), neural networks (CNNs), etc.

Oriented towards simple description of shape (computationally cheap . . . mostly).

Large feature sets at learning stage (∼ 104, 105) — “brute-force attack”.

Connection between simple features and classes might be unclear for designer.

Learning algorithm expected to select a subset of relevant features (∼ 103).

Applicable in recognition tasks. Only some applicable directly in detection tasks.
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Object detection — overview

Object detection — overview

Dense detection procedures have high computational demands
(e.g. ≈ 105±1 image windows to be analyzed per frame, under 1 s or less)

Procedure (sketch):
loop over several scales;

for each scale scan image with a sliding window;
for each window position: (1) extract features, (2) calculate classifier’s response.

Common repertoire: Haar-like features or HOG descriptor.

Features of windows extracted fast, in constant time — O(1) — owing to a computational
trick known as: integral image.

Number of operations does not depend on the number of pixels in given window.

Haar/HOG drawbacks: sometimes not accurate enough, rotationally dependent.
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Object detection — overview

Constant-time computations
O(1) — the most attractive for a computer scientist, but rare . . .
Typically: amortized constant-time complexity.
hash tables, hash maps
Union–Find data structure

— amortized ‘Find’ operation takes O(log∗ n) — iterated logarithm, note: log∗2 265 536 = 5
Haar-like features (Viola & Jones, 2001, 2004), HOG descriptor (Dalal & Triggs, 2005).
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Object detection — overview

Cost of detection procedure
Cost (direct):

Θ

(S−1∑

s=0

nx − αswx + 1

βαswx
︸︷︷︸

dx(s)

ny − αswy + 1

βαswy
︸︷︷︸

dy(s)

(
n αswxα

swy
︸     ︷︷     ︸
no. of pixels

cfe/px + n cd/f

))
, (1)

nx × ny — image dimensions,
wx × wy — smallest size of sliding window,
S — number of scales, α — window growing factor, β — window jumping ratio,
dx(s), dy(s) — window jumps for given scale,
n — number of selected features,
cfe/px — average cost of 1 feature extraction per pixel,
cd/f — average cost of classifier’s response per 1 feature.
Example:
nx = 640, ny = 480,
wx = wy = 48, (smallest objects ≈ 10% of image height)
S = 8, α = 1.2, β = 0.05,
n = 500 (suppose it is sufficient for our targets)
cfe/px = cd/f = 10−10 s, (optimistic)
→windows to be analyzed ≈ 126 000 (neglecting roundings of window sizes and jumps)
→ time ≈ 33 s.
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Object detection — overview

Ideas for improvements

1 Integral images (cumulants)
One or more integral images prepared once before detection procedure
(or possibly, before each scale scan — if scale-dependent).
Features extracted in constant time cfe, regardless of number of pixels in window.
Complexity reduced to:

Θ

(S−1∑

s=0

nx − αswx + 1

βαswx

ny − αswy + 1

βαswy

(
n cfe + n cd/f

))
. (2)

2 Classifiers cascade
Observation: positive windows constitute a very small fraction of all windows,
Classifier “split” into stages (layers), applying succesively more features.
Positive indication requires traversing all stages. Negative indication on any stage
stops further analysis.
Average number n of features per window much smaller than the total: (n̄≪ n).
Complexity reduced to:

Θ

(S−1∑

s=0

nx − αswx + 1

βαswx

ny − αswy + 1

βαswy

(
n cfe + n cd/f

))
. (3)
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Object detection — overview

Integral images
Known examples:

ii(x, y) =
∑

16j6x

∑

16k6y

i(j, k) → fast (constant-time) sums or averages of pixels,

− − +

∑

x16x6x2

∑

y16y6y2

i(x, y) = ii(x2 , y2) − ii(x1 − 1, y2) − ii(x2 , y1 − 1) + ii(x1 − 1, y1 − 1)

ii(x, y) =
∑

16j6x

∑

16k6y

i2(j, k) → fast (constant-time) variances of pixels,

iil(x, y) =
∑

16j6x

∑

16k6y

v(j, k, l) → fast (constant-time) angle votes in sections l=1, 2, . . . (HOG).
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∑

16k6y

i2(j, k) → fast (constant-time) variances of pixels,

iil(x, y) =
∑

16j6x

∑

16k6y

v(j, k, l) → fast (constant-time) angle votes in sections l=1, 2, . . . (HOG).

Our contributions — new repertoire of integral images and features:

fast (constant-time) Fourier moments (Klęsk, 2017),

fast (constant-time) statistical moments (Klęsk & Bera, 2018),

fast (constant-time) Zernike moments (Bera, Klęsk, & Sychel, 2018).
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Orthogonal expansions

Inner product, norm, orthogonality

Inner product (for functions of one variable):

〈g, h〉 =
∫ 1

0
g(x)h(x) dx. (4)

Norm (quadratic) induced by inner product:

‖g‖ =
√
〈g, g〉 =

(∫ 1

0
g2(x) dx

)1/2

. (5)

Orthogonality — g and h are orthogonal, g ⊥ h, iff:

〈g, h〉 = 0. (6)

Analogies to: vectors, Pythagorean theorem, law of cosines —

g

h g − h ‖g − h‖2 = 〈g − h, g − h〉 = ‖g‖2 − 2〈g, h〉 + ‖h‖2. (7)
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Orthogonal expansions

Expansions

Let f be a function over [0, 1].

Let g0, g1, g2, . . . be orthogonal functions over [0, 1].

Suppose true is the following representation (expansion):

f (x) = c0g0(x) + c1g1(x) + c2g2(x) + · · · , (8)

where ck are some real coefficients.

What has to happen? ck =?
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Orthogonal expansions

Expansions

Let f be a function over [0, 1].

Let g0, g1, g2, . . . be orthogonal functions over [0, 1].

Suppose true is the following representation (expansion):

f (x) = c0g0(x) + c1g1(x) + c2g2(x) + · · · , (8)

where ck are some real coefficients.

What has to happen? ck =?

f = c0g0 + c1g1 + c2g2 + · · ·

ckgk = f −
∞∑

j=0
j,k

cjgj (isolating expression with ck)

(9)
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Orthogonal expansions

Approximations in quadratic norm

Theorem 1 (“about the best approximation in quadratic norm”)

Let f be a function to be approximated and let g0, g1, . . . , gn form an orthogonal base. Suppose

f̂ = c0g0 + c1g1 + · · · + cngn is an approximation of f . Then, ‖f − f̂ ‖ is minimum if and only if:

ck =
1

‖gk‖2
〈f , gk〉. (10)
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Orthogonal expansions

Approximations in quadratic norm
Proof 1 (by necessary condition of optimum):

∂

∂ck
‖f − f̂ ‖ = 0
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Orthogonal expansions

Approximations in quadratic norm
Proof 1 (by necessary condition of optimum):

∂

∂ck
‖f − f̂ ‖ = 0

∂

∂ck

∥∥∥∥f −
n∑

j=0

cjgj

∥∥∥∥
2
= 0 (squared norm can be observed instead of norm)
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Orthogonal expansions

Approximations in quadratic norm
Proof 1 (by necessary condition of optimum):

∂

∂ck
‖f − f̂ ‖ = 0

∂

∂ck

∥∥∥∥f −
n∑

j=0

cjgj

∥∥∥∥
2
= 0 (squared norm can be observed instead of norm)

∂

∂ck

〈
f −

n∑

j=0

cjgj, f −
n∑

j=0

cjgj

〉
= 0

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 16 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Orthogonal expansions

Approximations in quadratic norm
Proof 1 (by necessary condition of optimum):

∂

∂ck
‖f − f̂ ‖ = 0

∂

∂ck

∥∥∥∥f −
n∑

j=0

cjgj

∥∥∥∥
2
= 0 (squared norm can be observed instead of norm)

∂

∂ck

〈
f −

n∑

j=0

cjgj, f −
n∑

j=0

cjgj

〉
= 0

∂

∂ck


‖f ‖

2 − 2

n∑

j=0

cj〈f , gj〉 +
n∑

j=0

n∑

l=0

cjcl〈gj, gl〉


 = 0
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Orthogonal expansions

Approximations in quadratic norm
Proof 1 (by necessary condition of optimum):

∂

∂ck
‖f − f̂ ‖ = 0

∂

∂ck

∥∥∥∥f −
n∑
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∥∥∥∥
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∂

∂ck

〈
f −

n∑

j=0

cjgj, f −
n∑

j=0

cjgj

〉
= 0

∂

∂ck


‖f ‖

2 − 2

n∑

j=0

cj〈f , gj〉 +
n∑

j=0

n∑

l=0

cjcl〈gj, gl〉


 = 0

∂

∂ck


−2

n∑

j=0

cj〈f , gj〉 +
n∑

j=0

c2
j ‖gj‖2


 = 0 (due to orthogonality 〈gj, gl〉 = 0 for j , l)
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Orthogonal expansions

Approximations in quadratic norm
Proof 1 (by necessary condition of optimum):

∂

∂ck
‖f − f̂ ‖ = 0

∂

∂ck

∥∥∥∥f −
n∑

j=0

cjgj

∥∥∥∥
2
= 0 (squared norm can be observed instead of norm)

∂

∂ck

〈
f −

n∑

j=0

cjgj, f −
n∑

j=0

cjgj

〉
= 0

∂

∂ck


‖f ‖

2 − 2

n∑

j=0

cj〈f , gj〉 +
n∑

j=0

n∑

l=0

cjcl〈gj, gl〉


 = 0

∂

∂ck


−2

n∑

j=0

cj〈f , gj〉 +
n∑

j=0

c2
j ‖gj‖2


 = 0 (due to orthogonality 〈gj, gl〉 = 0 for j , l)

− 2〈f , gk〉 + 2ck‖gk‖2 = 0 �
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Orthogonal expansions

Approximations in quadratic norm
Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients d0, d1, . . . , dn such

that for h = d0g0 + d1g1 + · · · + dngn we have: ‖f − h‖ 6 ‖f − f̂ ‖. Then:
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Orthogonal expansions

Approximations in quadratic norm
Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients d0, d1, . . . , dn such

that for h = d0g0 + d1g1 + · · · + dngn we have: ‖f − h‖ 6 ‖f − f̂ ‖. Then:

‖f − h‖2 6 ‖f − f̂ ‖2 (squared norms observed)
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Orthogonal expansions
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Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients d0, d1, . . . , dn such

that for h = d0g0 + d1g1 + · · · + dngn we have: ‖f − h‖ 6 ‖f − f̂ ‖. Then:

‖f − h‖2 6 ‖f − f̂ ‖2 (squared norms observed)

‖f − f̂ + f̂ − h‖2 6 ‖f − f̂ ‖2 (adding a suitable zero)
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Orthogonal expansions

Approximations in quadratic norm
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✟
✟
✟‖f − f̂ ‖2 + 2〈f − f̂ , f̂ − h〉 + ‖̂f − h‖2 6

✟
✟
✟‖f − f̂ ‖2
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Orthogonal expansions

Approximations in quadratic norm
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It suffices to show that the error f − f̂ and the difference of approximators f̂ − h are orthogonal:
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Orthogonal expansions

Approximations in quadratic norm
Proof 2 (by contradiction): Suppose there exist a better sequence of coefficients d0, d1, . . . , dn such
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✟
✟
✟‖f − f̂ ‖2 + 2〈f − f̂ , f̂ − h〉 + ‖̂f − h‖2 6

✟
✟
✟‖f − f̂ ‖2

It suffices to show that the error f − f̂ and the difference of approximators f̂ − h are orthogonal:

〈f , f̂ 〉 − 〈f , h〉 − ‖̂f ‖2 + 〈̂f , h〉 =
〈
f ,

n∑

k=0

ckgk

〉
−

〈
f ,

n∑

k=0

dkgk

〉
−

〈 n∑

k=0

ckgk,
n∑

k=0

ckgk

〉
+

〈 n∑

k=0

ckgk,
n∑

k=0

dkgk

〉

=

n∑

k=0

ck 〈f , gk〉︸︷︷︸
ck‖gk‖2

−
n∑

k=0

dk 〈f , gk〉︸︷︷︸
ck‖gk‖2

−
n∑

k=0

c2
k‖gk‖2 +

n∑

k=0

ckdk‖gk‖2 = 0.
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Orthogonal expansions

Approximations in quadratic norm
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✟
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It suffices to show that the error f − f̂ and the difference of approximators f̂ − h are orthogonal:

〈f , f̂ 〉 − 〈f , h〉 − ‖̂f ‖2 + 〈̂f , h〉 =
〈
f ,

n∑

k=0

ckgk

〉
−

〈
f ,

n∑

k=0

dkgk

〉
−

〈 n∑

k=0

ckgk,
n∑

k=0

ckgk

〉
+

〈 n∑

k=0

ckgk,
n∑

k=0

dkgk

〉

=

n∑

k=0

ck 〈f , gk〉︸︷︷︸
ck‖gk‖2

−
n∑

k=0

dk 〈f , gk〉︸︷︷︸
ck‖gk‖2

−
n∑

k=0

c2
k‖gk‖2 +

n∑

k=0

ckdk‖gk‖2 = 0.

Therefore, ‖̂f − h‖2 6 0, which is not true unless f̂ = h, hence: d0 = c0, d1 = c1, . . ., dn = cn. �
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Haar wavelets and Haar-like features

Haar wavelets
Mother wavelet and descendants:

ψ(x) =



1, 0 6 x < 1/2;

−1, 1/2 6 x < 1;

0, otherwise.

1

2
1

-1

1

1

2
1

-1

1

1

2
1

-1

1

1

2
1

-1

1

1

2
1

-1

1

1

2
1

-1

1

1

2
1

-1

1

ψ10 = ψ(x)

ψ20 = ψ(2x) ψ21 = ψ(2x − 1)

ψ30 = ψ(4x) ψ31 = ψ(4x − 1) ψ32 = ψ(4x − 2) ψ33 = ψ(4x − 3)

ψj,k = ψ(2j−1x − k), j = 1, 2, . . . ; k = 0, 1, . . . , 2j−1 − 1.

Orthogonality:

∀(j, k) , (l,m) 〈ψj,k, ψl,m〉 =
∫ 1

0
ψj,k(x)ψl,m(x) dx = 0. (11)

Expansion of a function:

f (x) = c0 · 1 +
∞∑

j=1

2j−1−1∑

k=0

cj,kψj,k(x). (12)

Coefficients:
cj,k = 1/‖ψj,k‖2〈f , ψj,k〉, c0 = 〈f , 1〉. (13)
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Haar wavelets and Haar-like features

Approximations by Haar wavelets
Example 1: f (x) = x.
Coefficients:

c0 =
1

‖1‖2
〈f , 1〉 = 1

1

∫ 1

0
x dx =

x2

2

∣∣∣∣∣
1

0
=

1

2
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Haar wavelets and Haar-like features

Approximations by Haar wavelets
Example 1: f (x) = x.
Coefficients:

c0 =
1

‖1‖2
〈f , 1〉 = 1

1

∫ 1

0
x dx =

x2

2

∣∣∣∣∣
1

0
=

1

2

c1,0 =
1

‖ψ1,0‖2
〈f , ψ1,0〉 =

1

1



∫ 1/2

0/2
x dx +

∫ 2/2

1/2
(−x) dx


 =

x2

2

∣∣∣∣∣
1/2

0/2
− x2

2

∣∣∣∣∣
2/2

1/2
= − 1

4
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Haar wavelets and Haar-like features

Approximations by Haar wavelets
Example 1: f (x) = x.
Coefficients:

c0 =
1

‖1‖2
〈f , 1〉 = 1

1

∫ 1

0
x dx =

x2

2

∣∣∣∣∣
1

0
=

1

2

c1,0 =
1

‖ψ1,0‖2
〈f , ψ1,0〉 =

1

1



∫ 1/2

0/2
x dx +

∫ 2/2

1/2
(−x) dx


 =

x2

2

∣∣∣∣∣
1/2

0/2
− x2

2

∣∣∣∣∣
2/2

1/2
= − 1

4

c2,0 =
1

‖ψ2,0‖2
〈f , ψ2,0〉 =

1

1/2



∫ 1/4

0/4
x dx +

∫ 2/4

1/4
(−x) dx


 =

1

1/2

(
x2

2

∣∣∣∣∣
1/4

0/4
− x2

2

∣∣∣∣∣
2/4

1/4

)
= − 1

8

c2,1 =
1

‖ψ2,1‖2
〈f , ψ2,1〉 =

1

1/2



∫ 3/4

2/4
x dx +

∫ 4/4

3/4
(−x) dx


 =

1

1/2

(
x2

2

∣∣∣∣∣
3/4

2/4
− x2

2

∣∣∣∣∣
4/4

3/4

)
= − 1

8
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Haar wavelets and Haar-like features

Approximations by Haar wavelets
Example 1: f (x) = x.
Coefficients:

c0 =
1

‖1‖2
〈f , 1〉 = 1

1

∫ 1

0
x dx =

x2

2

∣∣∣∣∣
1

0
=

1

2

c1,0 =
1

‖ψ1,0‖2
〈f , ψ1,0〉 =

1

1



∫ 1/2

0/2
x dx +

∫ 2/2

1/2
(−x) dx


 =

x2

2

∣∣∣∣∣
1/2

0/2
− x2

2

∣∣∣∣∣
2/2

1/2
= − 1

4

c2,0 =
1

‖ψ2,0‖2
〈f , ψ2,0〉 =

1

1/2



∫ 1/4

0/4
x dx +

∫ 2/4

1/4
(−x) dx


 =

1

1/2

(
x2

2

∣∣∣∣∣
1/4

0/4
− x2

2

∣∣∣∣∣
2/4

1/4

)
= − 1

8

c2,1 =
1

‖ψ2,1‖2
〈f , ψ2,1〉 =

1

1/2



∫ 3/4

2/4
x dx +

∫ 4/4

3/4
(−x) dx


 =

1

1/2

(
x2

2

∣∣∣∣∣
3/4

2/4
− x2

2

∣∣∣∣∣
4/4

3/4

)
= − 1

8

c3,0 =
1

‖ψ3,0‖2
〈f , ψ3,0〉 =

1

1/4



∫ 1/8

0/8
x dx +

∫ 2/8

1/8
(−x) dx


 =

1

1/4

(
x2

2

∣∣∣∣∣
1/8

0/8
− x2

2

∣∣∣∣∣
2/8

1/8

)
= − 1

16

c3,1 =
1

‖ψ3,1‖2
〈f , ψ3,1〉 =

1

1/4



∫ 3/8

2/8
x dx +

∫ 4/8

3/8
(−x) dx


 =

1

1/4

(
x2

2

∣∣∣∣∣
3/8

2/8
− x2

2

∣∣∣∣∣
4/8

3/8

)
= − 1

16

c3,2 =
1

‖ψ3,2‖2
〈f , ψ3,2〉 =

1

1/4



∫ 5/8

4/8
x dx +

∫ 6/8

5/8
(−x) dx


 =

1

1/4

(
x2

2

∣∣∣∣∣
5/8

4/8
− x2

2

∣∣∣∣∣
6/8

5/8

)
= − 1

16

c3,3 =
1

‖ψ3,3‖2
〈f , ψ3,3〉 =

1

1/4



∫ 7/8

6/8
x dx +

∫ 8/8

7/8
(−x) dx


 =

1

1/4

(
x2

2

∣∣∣∣∣
7/8

6/8
− x2

2

∣∣∣∣∣
8/8

7/8

)
= − 1

16

· · ·
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Haar wavelets and Haar-like features

Approximations by Haar wavelets

Example 1: f (x) = x

n = 0, features: 1 n = 1, features: 2 n = 2, features: 4
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MAE: 1/4 MAE: 1/8 MAE: 1/16

n = 3, features: 8 n = 4, features: 16 n = 5, features: 32
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P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 21 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Haar wavelets and Haar-like features

Approximations by Haar wavelets

Example 2: f (x) = sin(2πx) + 1/4 cos(4 · 2πx)

n = 0, features: 1 n = 1, features: 2 n = 2, features: 4
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MAE: 0.6526 MAE: 0.3046 MAE: 0.3046

n = 3, features: 8 n = 4, features: 16 n = 5, features: 32
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Haar wavelets and Haar-like features

Role of expansions in detection / recognition

Apply coefficients of expansions as input information (features,
attributes) for detection / recognition tasks.

Objects from the same class (faces, people, road signs, etc.) should
exhibit certain similarities in their expansion coefficients.
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Haar wavelets and Haar-like features

Haar wavelets (2D) — example

Orthogonal base generated product-wise:

ψj,k;l,m(x, y) = ψj,k(x)ψl,m(y). (14)

Wavelet polynomial (of order n) of two variables:

f̂ (x, y) = c0 · 1 +
n∑

d=1

∑

06j,l6d
j+l=d

2j−1−1∑

k=0

2l−1−1∑

m=0

cj,k;l,mψj,k;l,m(x, y) ≈ f (x, y), (15)

where (x, y) ∈ [0, 1] × [0, 1].

Coefficients (of expansion / approximation):

cj,k;l,m = 1/‖ψj,k;l,m‖2〈f , ψj,k;l,m〉, c0 = 〈f , 1〉, (16)

where: 〈g, h〉 =
∫ 1

0

∫ 1

0
g(x, y)h(x, y) dx dy, ‖g‖2 = 〈g, g〉.
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Haar wavelets and Haar-like features

Haar wavelets (2D) — example

Term of order 0:

Terms of order 1:

Terms of order 2:

Terms of order 3:
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Haar wavelets and Haar-like features

Approximations by Haar wavelets (2D)
original: 96 × 96

n = 0, features: 1 n = 1, features: 3 n = 2, features: 8 n = 3, features: 20 n = 4, features: 48

feats/pxs: 1.09 · 10−4 feats/pxs: 3.26 · 10−4 feats/pxs: 8.68 · 10−4 feats/pxs: 2.17 · 10−3 feats/pxs: 5.21 · 10−3

MAE: 0.1288 MAE: 0.1197 MAE: 0.1116 MAE: 0.0976 MAE: 0.0851

n = 5, features: 112 n = 6, features: 256 n = 7, features: 576 n = 8, features: 1 280 n = 9, features: 2 816

feats/pxs: 0.0122 feats/pxs: 0.0278 feats/pxs: 0.0625 feats/pxs: 0.1389 feats/pxs: 0.3056
MAE: 0.0768 MAE: 0.0606 MAE: 0.0510 MAE: 0.0405 MAE: 0.0324
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Haar wavelets and Haar-like features

Fourier moments (2D)

Consider the following Fourier approximation:

f̂ (x, y) =
∑

−n6j6n

∑

−n6k6n

cj,ke2πi (jx+ky) ≈ f (x, y) (17)

where: (x, y) ∈ [0, 1] × [0, 1] and i is the imaginary unit, i 2 = −1.

Hermitian inner product:

〈g, h〉 =
∫ 1

0

∫ 1

0
g(x, y)h(x, y) dx dy. (upper bar denotes complex conjugate) (18)

Norm:
√
〈g, g〉 (= 1 for Fourier base).

Coefficients — moments:

cj,k =

∫ 1

0

∫ 1

0
f (x, y)e−2πi (jx+ky) dx dy. (19)
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Haar wavelets and Haar-like features

Approximations by Fourier moments (2D)
original: 96 × 96

n = 0, features: 1 n = 1, features: 9 n = 2, features: 25 n = 3, features: 49 n = 4, features: 81

feats/pxs: 1.09 · 10−4 feats/pxs: 9.77 · 10−4 feats/pxs: 2.71 · 10−3 feats/pxs: 5.32 · 10−3 feats/pxs: 8.79 · 10−3

MAE: 0.1288 MAE: 0.1100 MAE: 0.0923 MAE: 0.0795 MAE: 0.0711

n = 5, features: 121 n = 6, features: 169 n = 7, features: 225 n = 8, features: 289 n = 9, features: 361

feats/pxs: 0.0131 feats/pxs: 0.0183 feats/pxs: 0.0244 feats/pxs: 0.0314 feats/pxs: 0.0392
MAE: 0.0600 MAE: 0.0554 MAE: 0.0506 MAE: 0.0451 MAE: 0.0417
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Haar wavelets and Haar-like features

Approximations: Haar (2D) vs. Fourier (2D)
original: 96 × 96

n = 5, features: 112 n = 6, features: 256 n = 7, features: 576 n = 8, features: 1 280 n = 9, features: 2 816

feats/pxs: 0.0122 feats/pxs: 0.0278 feats/pxs: 0.0625 feats/pxs: 0.1389 feats/pxs: 0.3056
MAE: 0.0768 MAE: 0.0606 MAE: 0.0510 MAE: 0.0405 MAE: 0.0324

n = 4, features: 81 n = 7, features: 225 n = 11, features: 529 n = 17, features: 1 225 n = 26, features: 2 809

feats/pxs: 8.79 · 10−3 feats/pxs: 0.0244 feats/pxs: 0.0574 feats/pxs: 0.1329 feats/pxs: 0.3048
MAE: 0.0711 MAE: 0.0506 MAE: 0.0380 MAE: 0.0297 MAE: 0.0240

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 29 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Haar wavelets and Haar-like features

Haar-like features (Viola & Jones, 2001)

Two-dimensional wavelet templates:

Templates mapped to features by scaling and anchoring within detection window
(orthogonality can be neglected).

Features: differences in averages of pixel intesities under white and black regions
(rough contours).

Intention: “brute force attack on features” — to generate a great multitude e.g. ∼ 105.

Some of features might happen to represent good characteristics of targets.
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Haar wavelets and Haar-like features

Integral image (repeated)

Image function: i(x, y) — pixel intensity at (x, y)

Integral image ii(x, y) defined as:

ii(x, y) =
∑

16j6x

∑

16k6y

i(j, k). (20)

ii(x, y)
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Haar wavelets and Haar-like features

Integral image (repeated)

How (having prepared ii) to calculate the sum of intensities in a rectangle spanning from (x1, y1) to
(x2, y2)? ∑

x16x6x2

∑

y16y6y2

i(x, y) =? (21)

(x1, y1) (x1, y2)

(x2, y1) (x2, y2)
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Haar wavelets and Haar-like features

Growth of integral image
Constant-time calculation of a sum:∑

x16x6x2

∑

y16y6y2

i(x, y) = ii(x2, y2) − ii(x1 − 1, y2) − ii(x2, y1 − 1) + ii(x1 − 1, y1 − 1). (22)

− − +

Sufficient are 3 operations on 4 points read from integral image array regardless of
rectangle size — O(1).
Analogy to calculus (growth of antiderivative / primitive function):

∫ x2

x1

∫ y2

y1

f (x, y) dx dy = F(x2, y2) − F(x1, y2) − F(x2, y1) + F(x2, y2), (23)

where F is antiderivative for f , that is: F(x, y) =
∫ x

−∞

∫ y

−∞ f (u, v) du dv.

‘edge features’ (Haar-like): 8 or 9 operations, ‘diagonal features’: 13 operations.
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Haar wavelets and Haar-like features

Vizualization

[by Adam Harvey, YouTube: https://www.youtube.com/watch?v=hPCTwxF0qf4]
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Haar wavelets and Haar-like features

Number of features — parameterization

Commonly, some parameterization is introduced using: scaling and positioning on
templates within window.

Let q denote the number of possible scalings along one dimension.
Hence, there exist q2 scaled versions for each template.

Let p generate a regular grid (2p − 1) × (2p − 1) of anchoring points for features.

Total number of features:
n(q, p) = 5q2(2p − 1)2. (24)

Examples:

p = 1 p = 2 p = 3 p = 4 p = 5
q = 1 5 45 125 245 405
q = 2 20 180 500 980 1 620
q = 3 45 405 1 125 2 205 3 645
q = 4 80 720 2 000 3 920 6 480
q = 5 125 1 125 3 125 6 125 10 125
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Haar wavelets and Haar-like features

Example of parameterization for: q = 3, p = 2
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Practical example: face detector (HFs)

Experimental setup

Train data: 7 258 positive examples, 100 000 negative examples.

Learning algorithm: RealBoost + bins, ensemble sizes: T = 256 or T = 512.

Test data: ≈ 70 500 000 windows within 500 images containing 1 000 faces.

To conveniently generate ROCs a test subset generated with 2 · 106 negatives
→ precision along FAR axis: 5 · 10−7.

Feature spaces:
(1) q = 3, p = 3 (1 125 feats.),
(2) q = 4, p = 3 (2 000 feats.),
(3) q = 3, p = 4 (2 205 feats.),
(4) q = 4, p = 4 (3 920 feats.),
(5) q = 5, p = 5 (10 125 feats.).

Train data sizes: from 0.5 GB to 4.3 GB

Detection procedure 1 (“heavy”): ≈ 151 000 windows
(8 scales, sliding window 48 × 48 up to 172 × 172, jumps ratio 0.05).

Detection procedure 2 (“light”): ≈ 11 000 windows
(4 scales, sliding window 120 × 120 up to 207 × 207, jumps ratio 0.05)

Software written in C# with key procedures in C++ as dll libraries.
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Practical example: face detector (HFs)

Examples of outcomes
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Practical example: face detector (HFs)

Examples of outcomes
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Practical example: face detector (HFs)

Examples of outcomes
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Practical example: face detector (HFs)

Examples of outcomes (with errors)
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Practical example: face detector (HFs)

Examples of outcomes (with errors)

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 43 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Practical example: face detector (HFs)

False alarms or faces?
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Practical example: face detector (HFs)

ROC curves
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"FACES" ROCs (HAAR-LIKE FEATURES)

HFs: (1225) [3, 3]; RB+B: T = 512, B = 8
HFs: (2000) [4, 3]; RB+B: T = 512, B = 8
HFs: (2205) [3, 4]; RB+B: T = 512, B = 8
HFs: (3920) [4, 4]; RB+B: T = 512, B = 8
HFs: (10125) [5, 5]; RB+B: T = 512, B = 8
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Practical example: face detector (HFs)

Accuracy measures

name / description AUCα sensiti- FAR FAR accuracy

α=10−5 α=10−4 α=10−3 vity per

image

per

window

per

window

HF q=3, p=3 (1125); T=512 0.6761 0.8123 0.9156 0.699 0.098 6.975·10−7 0.999995018084708

HF q=4, p=3 (2000); T=512 0.8021 0.9082 0.9624 0.849 0.086 6.121·10−7 0.999997238589628

HF q=3, p=4 (2205); T=512 0.7075 0.8376 0.9320 0.741 0.084 5.978·10−7 0.999995715550288

HF q=4, p=4 (3920); T=512 0.8188 0.9141 0.9729 0.897 0.102 7.234·10−7 0.999997815602899

HF q=5, p=5 (10125); T=512 0.9353 0.9793 0.9951 0.970 0.066 4.681·10−7 0.999999106383004
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Practical example: face detector (HFs)

Time performance

quantity (or operations)

“heavy” procedure

Haar-like features (T = 512)

(495 distinct feats.)

“light” procedure

Haar-like features (T = 512)

(495 distinct feats.)

no. of analyzed windows 151 385 11 838

preparation time for integral image 6 ms 6 ms

total time of detection procedure 513 ms 83 ms

time per 1 window 3.38µs (amortized: 3.34µs) 7.01µs (amortized: 6.50µs)

time per 1 window and 1 feature 6.83 ns (amortized: 6.75 ns) 14.16 ns (amortized: 13.14 ns)

[640 × 480 image; parallel computations on: Intel Xeon E3-1505M v5 4×2-core 2.80 (3.70) GHz CPU;]

[cascade of classifiers not used]
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)
3D images — C-scans — from GPR (Ground Penetrating Radar).

Coordinates: across track × along track × time. Image function: i(x, y, t).

Time axis can be inuitively associated with depth. Radar working in frequency domain —
time samples obtained from complex signals via IFFT.

Objects non-transparent to GPR generated hiperboloids in images.

R&D project by: (Olech, Kapruziak, Godziuk, Klęsk, 2011–2014). In particular, research
on various 3D features computed via integral images: Haar-like features, statistical
moments, Fourier moments, HOG descriptor.
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

t = 404 t = 405 t = 406 t = 407 t = 408 t = 409 t = 410 t = 411 t = 412 t = 413 t = 414 t = 415

t = 416 t = 417 t = 418 t = 419 t = 420 t = 421 t = 422 t = 423 t = 424 t = 425 t = 426 t = 427

t = 428 t = 429 t = 430 t = 431 t = 432 t = 433 t = 434 t = 435 t = 436 t = 437 t = 438 t = 439
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)
Proposition of 17 templates for 3D Haar-like features.
No. of features at learning stage: 17 000.
Train data based on 210 C-scans: ≈ 7 GB (≈ 100 000 examples of 3D windows).
Learning algorithm: boosted decision trees (shallow trees — 4 or 8 terminals).
Final calssifier (ensemble) consisting of 600 trees and thereby at most 1 800 or 4 200
features (for 4 and 8 terminals, respectively).
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)
Growth of integral image ii(x, y, t) based on 8 points:

x1x1x1x1

x1x1x1x1

x1

x2x2x2x2
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t2

∆x1 ,y1 ,t1
x2 ,y2 ,t2

(ii)

=

+ii(x2 , y2 , t2) −ii(x1−1, y2 , t2) −ii(x2 , y1−1, t2) +ii(x1−1, y1−1, t2)

−ii(x2 , y2 , t1−1) +ii(x1−1, y2 , t1−1) +ii(x2 , y1−1, t1−1) −ii(x1−1, y1−1, t1−1)
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

Example of metal AT mine detection with a side false alarm:
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)

Example of plastic AT mine detection:
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Practical example: landmine detector (3D HFs)

Landmine detector (3D HFs)
Examples of relevant features in the first decision tree (within ensemble):
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Practical example: landmine detector (3D HFs)

Landmine detection — selected papers

P. Klęsk, M. Kapruziak, and B. Olech, “Fast Extraction of 3D Fourier
Moments via Multiple Integral Images: An Application to Antitank Mine
Detection in GPR C-Scans” in International Conference on Computer Vision
and Graphics (ICCVG), 2016, pp. 206–220.

P. Klęsk, M. Kapruziak, and B. Olech, “Statistical moments calculated via
integral images in application to landmine detection from Ground
Penetrating Radar 3D scans”, Pattern Analysis and Applications, 2017,
pp. 1–14.

P. Klęsk, A. Godziuk, M. Kapruziak, and B. Olech, “Fast analysis of
C-scans from ground penetrating radar via 3-D Haar-like features with
application to landmine detection”, IEEE Transactions on Geoscience and
Remote Sensing, vol. 53, no. 7, 2015, pp. 3996–4009.

P. Klęsk, M. Kapruziak, and B. Olech, “A Comparison of Shallow Decision
Trees Under Real-Boost Procedure with Application to Landmine Detection
Using Ground Penetrating Radar” in International Conference on Artificial
Intelligence and Soft Computing (ICAISC), 2015, pp. 436–447.
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HOG descriptor

Histograms of Oriented Gradients

Idea described first in (Dalal & Triggs, 2005).

The technique observes orientations of local gradients present within cells of image
windows.

Gradient orientations (within [−π/2, π/2] or [0, 2π]) are dicretized.

Detection window partitioned into a regular grid of cells.

Each pixel “votes” within its cell for some orientation of gradient with vote strength
proportional to gradient magnitude anchored at that pixel.

Cells are grouped into larger blocks for normalization and mitigation of local image
constrasts.

Feature vector: concatenation of gradient distributions over all cells.
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HOG descriptor

HOG — examples for faces

Discretization of [0, 2π] into nθ = 8 intervals. Grid of cells: 5 × 3. Features: 120.

Discretization of [0, 2π] into nθ = 24 intervals. Grid of cells: 5 × 3. Features: 360.
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HOG descriptor

HOG — examples for faces

Discretization of [0, 2π] into nθ = 8 intervals. Grid of cells: 9 × 5. Features: 360.

Discretization of [0, 2π] into nθ = 24 intervals. Grid of cells: 9 × 5. Features: 1 080.
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HOG descriptor

HOG — face vs. non-face

vs.
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HOG descriptor

HOG — examples for faces

Discretization of [0, 2π] into nθ = 24 intervals. Grid: 21 × 13. Features: 6 552.

Visualization on a dense grid gradually resembles a face.
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HOG descriptor

HOG — examples for pedestrians

Discretization of [0, 2π] into nθ = 24 intervals. Grid: 21 × 9. Features: 4 536.
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HOG descriptor

HOG — examples for pedestrians

Discretization of [0, 2π] into nθ = 24 intervals. Grid: 21 × 9. Features: 4 536.
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HOG descriptor

HOG — examples for pedestrians

Discretization of [0, 2π] into nθ = 24 intervals. Grid: 21 × 9. Features: 4 536.
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HOG descriptor

HOG — pedestrian vs. non-pedestrian

vs.
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — what is this?
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HOG descriptor

HOG — how it works (1)
Convert image to grayscale.
Convolve image with simple gradient filters: hx = (−1, 0, 1), hy = (−1, 0, 1)T :

gx = i ∗ hx (25)

gy = i ∗ hy. (26)

Calculate gradient magnitude at each pixel (j, k) as:

G(j, k) =
√

gx
2(j, k) + gy

2(j, k). (27)
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HOG descriptor

HOG — how it works (2)

For each pixel find dominating angle θ(j, k).

There exist two possibilities of angle range to consider: [−π/2, π/2] or [0, 2π).

Depends on whether we want to take into account or neglect where gradients are headed.

True gradients, within [0, 2π), are headed from darker to lighter regions.

Angular ranges are implied by the choice of tangent arc function, i.e. tan−1:

θ(j, k) = atan(gy(j, k)/gx(j, k)), (28)

or
θ(j, k) = atan2(gy(j, k), gx(j, k)). (29)
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HOG descriptor

HOG — how it works (3)

Individual values (for single pixels) of angles θ(j, k) and magnitudes G(j, k) can be
strongly variable, even for similar images.

Therefore, aggregations of θ(j, k) and G(j, k) are introduced over some rectangular
surroundings — cells.

This leads to a more stable description — robustness to small changes or noises.

Cell sizes (in pixels) are implied by the grid size.

Denser grids produce more features but become gradually more susceptible to noises.

Angular range is discretized into an imposed number nθ of equally wide intervals —
bins.

Each pixel “votes” for the bin to which its dominating angle θ(j, k) belongs,
proportionally to gradient magnitude: G(j, k).

Normalized sums of votes for particular cells form stable statistics, and thereby features.
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HOG descriptor

HOG — how it works (4)

Let border angles be defined as:

φl = −π/2 + lπ/nθ, l = 0, 1, . . . ,nθ; (30)

φl = −π/nθ + l2π/nθ, l = 0, 1, . . . ,nθ; (31)

respectively for [−π/2, π/2] and [0, 2π).

Hence, middle angles (representatives) in particular bins are:

(φl + φl−1)/2, l = 1, . . . ,nθ. (32)

In case of [0, 2π) range, the middle angle for the first bin coincides with horizontal axis.

“Circularity” of the angular axis should be taken into account (i.e: −π/nθ corresponds to
2π − π/nθ).
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HOG descriptor

HOG — how it works (5)

A matrix of votes V of size nx × ny × nθ is formulated:

V(j, k, l) =


G(j, k), when φl−1 6 θ(j, k) < φl;

0, otherwise.
(33)

Votes are summed and memorized seperately for each pair of cell c and bin (l = 1, . . . ,nθ):

H1(c, l) =
∑

(j,k)∈c
V(j, k, l). (34)

Final features H(c, l) of HOG descriptor are calculated from H1 values by performing their
normalization over blocks of cells, i.e. cells being direct neighbours:

H(c, l) = H1(c, l)
/∑

cq∈N(c)

√
‖H1(cq)‖2

2
+ ǫ2, (35)

where: N(c) denotes the set of neighbours for a cell c, H1(c) =
(
H1(c, 1), . . . ,H1(c,nθ)

)
,

ǫ > 0 is a selectable constant, and ‖ · ‖ denotes Euclidean norm.
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HOG descriptor

HOG — visualization of successive steps

Original image, image with gradients G(j, k), and image with angles θ(j, k):

Images of votes for particular bins (example for nθ = 8)1:

Feature values H(c, l) over 9 × 5 grid (nθ = 8):

1
For readability, imaging with negation of gray levels and sharpening.
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HOG descriptor

HOG — visualization of successive steps

Final visualization — gradients of lengths H(c, l) are drawn along representative angles at
cell centers:
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HOG descriptor

HOG — integral images

Question: Which computational step could be speeded up by integral images
within a detection procedure?
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HOG descriptor

HOG — integral images

Answer: sums of votes within cells:

H1(c, l) =
∑

(j,k)∈c

V(j, k, l).

For nθ bins, one should introduce a set of nθ integral images to cumulate votes:

iil(x, y) =
∑

16j6x

∑

16k6y

V(j, k, l), l = 1, . . . ,nθ. (36)

Value H1(c, l) for a cell c, spanning from
(
x1(c), y1(c)

)
to

(
x2(c), y2(c)

)
, can be then calculated

as:

H1(c, l) = iil
(
x2(c), y2(c)

)− iil
(
x1(c)−1, y2(c)

)− iil
(
x2(c), y1(c)−1

)
+ iil

(
x1(c)−1, y2(c)−1

)
. (37)

Owing to integral images, extraction of each HOG feature becomes a constant-time
— O(1) — operation.

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 82 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Table of contents

1 Object detection — overview

2 Orthogonal expansions

3 Haar wavelets and Haar-like features

4 Practical example: face detector (HFs)

5 Practical example: landmine detector (3D HFs)

6 HOG descriptor

7 Boosting — variants and properties

8 Cascades of classifiers

9 Towards new results



Boosting — variants and properties

Boosting as a meta algorithm

Sketch of idea appeared in paper: “The strength of weak learnability” (Schapire, 1990).

Successive important works, shaping the current form of boosting, were: (Freund, 1995;
Freund & Schapire, 1996, 1997; Friedman, Hastie, & Tibshirani, 2000;
Schapire & Singer, 1999).

Boosting applies sequentially a simple learning algorithm on reweighted data — each
training example has a weight which changes during successive boosting rounds.

In effect, we obtain an ensemble of partial classifiers, also referred to as weak classifiers
— “anything better than a coin toss will do”.

Final response of ensemble classifier for some input object is calculated as a majority vote
or a weighted sum from responses of weak classifiers.

Boosting algorithms appear to be well-suited for large data sets.

Important properties observed in practice:
(1) capability to automatically select relevant features,
(2) robustness to overfitting — as new weak classifiers are added to ensemble, test error
stabilizes (instead of increasing).

It can be demonstrated mathematically that boosting can be seen as an sequential
additive model for logistic regression.
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Boosting — variants and properties

Notation

LetD = {
(xi, yi)

}
i=1,...,m denote the set of training examples, where xi = (xi1, xi2, . . . , xin) are

feature vectors, and yi ∈ {−1, 1} are class labels.

Rounds (iterations) of boosting procedure shall be numbered as t = 1, 2, . . . ,T.

Let wi denote the weight of i-th example on current boosting round.

In case it is needed, we shall write wi,t to indicate the round index explicitly.

Weigths can be regarded as a probability distribution over data examples,
i.e.: wi > 0 and

∑m
i=1 wi = 1.

Let ft denote a weak classifier produced on round t.

Let F denote the whole ensemble.

When observing progress of algorithm, let Ft (with subindex) denote the current state of
ensemble on round t, i.e. ordinary or weighted sum of f1, f2, . . . , ft. In this sense, notation
FT is equivalent with F.

Let [s] denote an indicator function, yielding 1 when s is true and 0 otherwise.
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Boosting — variants and properties AdaBoost

Discrete AdaBoost

1: algorithm DiscreteAdaBoost(D)
2: start with weights: wi := 1/m, i = 1, . . . ,m
3: for t := 1, . . . ,T repeat
4: fit weak classifier ft(x) ∈ {−1, 1} using weights wi on training data
5: calculate train error:
6: ǫt :=

∑m
i=1 wi[f (xi) , yi]

7: calculate classifier’s coefficient (importance):

8: αt := 1
2 log

1−ǫt
ǫt

9: update weights:
10: Zt :=

∑m
i=1 wie

−αt ft(xi)yi

11: wi := wie
−αt ft(xi)yi/Zt, i = 1, . . . ,m

12: return ensemble F(x) :=
∑T

t=1 αtft(x) with decision calculated as sgn F(x)

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 86 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Boosting — variants and properties AdaBoost

AdaBoost — data for experiments
Data drawn (i.i.d.) from joint probability distribution: P(x, y) = p(x)P(y|x).
p(x) — density of bivariate normal distribution N2(0, 1).

Conditional: P(y|x) = 1/
(
1 + eyβ(x1

2+x2
2−r2)

)
, where r = 1, β = 5.

Train data (m = 1000 examples):
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True error for some classifier c(x) ∈ {−1, 1}:

errP(c) =

∫ ∞

−∞

∑
y∈{−1,1}

[
c(x) , y

]
P(y|x)p(x) dx. (38)

True error for optimal classifier c(x) = 2[x1
2 + x2

2 − r2 < 0] − 1 is ≈ 0.084442.
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Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (1)

Each weak classifier is based on a single selected feature and performs a thresholded
decision:

ft(x; j, v, d) =


1, for d(xj − v) > 0;

−1, otherwise;
(39)

where j ∈ {1, . . . ,n}— feature index, v ∈ R— threshold, and d ∈ {−1, 1}— decision
direction.

Selection of a triplet (feature, threshold, direction) is typically carried out by minimization
of train error resulting from the split2:

(j∗, v∗, d∗) = arg min
(j,v,d)

m∑

i=1

wi[ft(xi; j, v, d) , yi]. (40)

2
Other approaches possible: maximum information gain, minimum Gini index
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Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (2)

Final decision boundary for the ensemble (T = 100) and error plots:
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True error: errP(F) ≈ 0.092805.

Error of F on test sample (also containing 1000 examples): 0.080.
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Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (3)

Learning progress:
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Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (4)

Learning progress:
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Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (5)

Learning progress:
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Boosting — variants and properties AdaBoost

AdaBoost + decision stumps (6)

Learning progress (last rounds):
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Boosting — variants and properties AdaBoost

AdaBoost + random lines (1)

Weak classifiers: ft(x; c) = 2[c0 + c1x1 + c2x2 > 0] − 1 with random coefficients drawn from
c ∈ [−1, 1]3.

Final decision boundary for the ensemble (T = 100) and error plots:
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True error: errP(F) ≈ 0.118755.

Error of F on test sample (also containing 1000 examples): 0.118.
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Boosting — variants and properties AdaBoost

AdaBoost + random lines (2)

Learning progress:
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P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 95 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Boosting — variants and properties AdaBoost

AdaBoost + random lines (3)

Learning progress:
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Boosting — variants and properties AdaBoost

AdaBoost + random lines (4)

Learning progress:
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Boosting — variants and properties AdaBoost

AdaBoost + random lines (5)

Learning progress:
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Boosting — variants and properties AdaBoost

AdaBoost + random lines (6)

Learning progress (last rounds):
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Boosting — variants and properties AdaBoost

AdaBoost — final remarks

Popular variants:

AdaBoost + decision stumps,
AdaBoost + decision trees,
AdaBoost + linear classifiers (e.g. SVM),
AdaBoost + naive Bayes.

“AdaBoost + decision stumps” variant is commonly synonymous with “Viola–Jones
AdaBoost”.

On a single boosting round the choice of weak classifier (step 4) can be performed using
any error criterion (or even randomly).

Typically though, two approches are most popular:
(1) classification error minimization: arg minft

∑m
i=1 wi[ft(xi) , yi],

(2) exponential creterion minimization: arg minft

∑m
i=1 wie

−αt ft(xi)yi .

Optimal values for αt are motivated by the exponential errors Zt.

If for some weak classifier ǫt > 1/2 then the coefficient αt shall “negate” responses to
opposite ones.
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Boosting — variants and properties AdaBoost

AdaBoost — properties
Demonstrate that:

1 the choice αt =
1
2 log

1−ǫt
ǫt

minimizes the exponential criterion Zt;

2 Zt is equal to the ratio of exponential criterions on two consecutive rounds:

m∑

i=1

e
−yi

∑t
j=1 αjfj(xi)

/ m∑

i=1

e
−yi

∑t−1
j=1 αjfj(xi); (41)

3 train error for the ensemble F os upper-bounded by the product of Zt values:

1

m

m∑

i=1

[sgn F(xi) , yi] 6

T∏

t=1

Zt; (42)

4 . . . and thereby not greater than:

2T
T∏

t=1

√
ǫt(1 − ǫt). (43)
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Boosting — variants and properties RealBoost

RealBoost — initial remarks

Idea in: “Improved boosting using confidence-rated predictions”
(Schapire & Singer, 1999).

Full name: Real AdaBoost commonly shortened to RealBoost.

Essence: weak classifiers are real-valued (not binary), i.e.. ft(x) ∈ R.

Response of a weak classifier is commonly set to approximate half the logit transform:

ft(x) =
1

2
log

P̂w(y = 1|x)

P̂w(y = −1|x)
, (44)

where P̂w(y = ±1|x) estimates class distributions conditional on x using current weights wi.

E.g., for “decision stumps” when considering a classifier f (x; j, v, d) we have:

P̂w(y = ±1|x; j, v, d) =



∑

{i : d(xij−v)60, yi=±1}
wi, for d(xij − v) 6 0;

∑

{i : d(xij−v)>0, yi=±1}
wi, for d(xij − v) > 0.

(45)

In case of decision trees (applied as weak classifiers), each terminal produces its own

estimation of P̂w(y = ±1|x).
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Boosting — variants and properties RealBoost

RealBoost — initial remarks

Ensemble classifier is of form F(x) =
∑T

t=1 ft(x) with decision: sgn F(x).

One resigns from coefficients of weak classifiers — αt — that were present in Discrete
AdaBoost.

Instead, a weighing mechanism for classifiers is built in real-valued responses.

One can demonstrate that expression 1/2 log
(̂
Pw(y = 1|x)

/̂
Pw(y = −1|x)

)
is the solution of

minimization of exponential criterion defined by distribution {wi} on data (on a sample).

Analogically, one can demonstrate that expression 1/2 log
(
P(y = 1|x)

/
P(y = −1|x)

)
is a

solution of minimization of exponential criterion defined by the true uknown joint
distribution which generates data i.e. P(x, y) = p(x)P(y|x).

One can observe similaries between RealBoost and logistic regression.
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Boosting — variants and properties RealBoost

RealBoost

1: algorithm RealBoost(D)
2: start with weights: wi := 1/m, i = 1, . . . ,m.
3: for t := 1, . . . ,T repeat
4: fit weak classifier ft(x) ∈ R using weights wi on training data, so that ft
5: minimizes exponential criterion

∑m
i=1 wie

−ft(xi)yi

6: or equivalently so that ft approximates half the logit transform:

7: ft(x) := 1/2 log
(̂
Pw(y = 1|x)

/̂
Pw(y = −1|x)

)
.

8: update weights:
9: Zt :=

∑m
i=1 wie

−ft(xi)yi .

10: wi := wie
−ft(xi)yi/Zt, i = 1, . . . ,m.

11: return ensemble F(x) :=
∑T

t=1 ft(x) with decision calculated as sgn F(x).
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Boosting — variants and properties RealBoost

RealBoost + decision stumps

Final decision boundary for the ensemble (T = 100) and error plots:
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True error: errP(F) ≈ 0.092465.

Error of F on test sample (also containing 1000 examples): 0.087.
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Boosting — variants and properties RealBoost

(RealBoost vs. AdaBoost) + decision stump

Learning progress (dashed curves for AdaBoost):
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Boosting — variants and properties RealBoost

(RealBoost vs. AdaBoost) + random lines

Final decision boundary for the ensemble (T = 100) and error plots:
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True error: errP(F) ≈ 0.0975283.

Error of F on test sample (also containing 1000 examples): 0.099.
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Boosting — variants and properties RealBoost

(RealBoost vs AdaBoost) + random lines

Learning progress (dashed curves for AdaBoost):
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Boosting — variants and properties Some weak classifiers

RealBoost + normals
Each weak classifier based on a single selected feature.
Performed are approximations of feature distributions conditional on classes

p(xj|y = ±1) via normal distributions: p̂w(xj|y = ±1) = 1/
√

2πσ2
j±e
−(xj−µj±)2/(2σ2

j±)
.

Means and variances calculated as:

µj− =
m∑

{i : yi=−1}
wixij

/ m∑

{i : yi=−1}
wi, µj+ =

m∑

{i : yi=1}
wixij

/ m∑

{i : yi=1}
wi, (46)

σ2
j− =

m∑

{i : yi=−1}
wix

2
ij

/ m∑

{i : yi=−1}
wi − µ2

j−, σ2
j+ =

m∑

{i : yi=−1}
wix

2
ij

/ m∑

{i : yi=1}
wi − µ2

j+. (47)

By virtue of Bayes theorem, response of a weak classifier becomes:

ft(x; j∗) =
1

2
log

p̂w(xj∗ |y = 1)̂Pw(y = 1)

p̂w(xj∗ |y = −1)̂Pw(y = −1)
(48)

=
1

2




(xj∗−µj∗−)2

2σ2
j∗−

−
(xj∗−µj∗+)2

2σ2
j∗+

+ log
σj∗−

σj∗+
+ log

P̂w(y=1)

P̂w(y=−1)


 , (49)

where P̂w(y=± 1)=
∑
{i : yi=±1} wi and j∗ indicates feature with smallest exponential criterion.
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Boosting — variants and properties Some weak classifiers

RealBoost + bins

Idea in (Rasolzadeh et al., 2006) — similar to RealBoost + normals, but conditional
distributions approximated via piecewise constant functions (of one variable)
implemented using bins.

Let [a1, a2] represents interval of some feature, and B denotes the imposed number of bins
(equally wide).

Index of bin β(x) ∈ {1, . . .,B} that x belongs to is:

β(x) =



⌈B(x−a1)/(a2−a1)⌉ for a1 < x 6 a2;

1 for x 6 a1;

B for a2 < x.

(50)

Let P̂w(y=−1, j inside bin b) =
∑
{i : yi=−1, β(xij)=b} wi denote estimated probability of the

event that an example is negative and its j-th feature belonds to bin b.

Response of a weak classifier (using j∗-th feature) is calculated as:

ft(x; j∗) =
1

2
log

P̂w

(
y = 1, j∗ inside bin β(xj∗ )

)

P̂w

(
y = −1, j∗ inside bin β(xj∗ )

) . (51)
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Boosting — variants and properties Some weak classifiers

RealBoost + decision trees

Idea based on well known CART algorithm (Breiman, Friedman, Olshen, & Stone, 1984).

Practical experiments show that a set of shallow trees (obtained by boosting) typically
performs better than a single deep tree.

CART algorithm builds recursively a binary tree by splitting at each step a domain
fragment via a cut orthogonal to some axis (feature).

Choice of the best split (j, v) — pair: (feature index, threshold) — is carried out by
minimizing expected impurity of children.

Popular impurities: Gini index, entropy.

Tree terminals have real-valued responses equal to halves of the logit transform.

Therefore, they are also piecewise constant approximations (similarly to RealBoost +
bins) but of several variables (not univariate).

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 111 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Boosting — variants and properties Some weak classifiers

RealBoost + decision trees
Consider a single step of recursion (for some tree node). Let {i} denotes only those indexes
of training examples that fall into the given node.
For each split (j, v) we need the following quantities:

W(L) =
∑

{i : xij<v}
wi, W(y=−1,L) =

∑

{i : xij<v, yi=−1}
wi, W(y=1,L) =

∑

{i : xij<v, yi=1}
wi,

W(R) =
∑

{i : xij>v}
wi, W(y=−1,R) =

∑

{i : xij>v, yi=−1}
wi, W(y=1,R) =

∑

{i : xij>v, yi=1}
wi, (52)

where L and R denote left and right parts, respectively, resulting from the split.
Probability estimates related to above quantities are:

P̂w(L) =W(L)/ (W(L) +W(R)) , P̂w(R) =W(R)/ (W(L) +W(R)) ,

P̂w(y=−1|L) =W(y=−1,L)/W(L), P̂w(y=1|L) =W(y=1,L)/W(L),

P̂w(y=−1|R) =W(y=−1,R)/W(R), P̂w(y=1|R) =W(y=1,R)/W(R). (53)

Expected impurity of children, e.g. for Gini index, becomes:

P̂w(L)
(
1−P̂2

w(y=−1|L)−P̂2
w(y=1|L)

)
+P̂w(R)

(
1−P̂2

w(y=−1|R)−P̂2
w(y=1|R)

)
. (54)

Each terminal returns: 1/2 log(
∑
{i : yi=1} wi/

∑
{i : yi=−1} wi).
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Boosting — variants and properties Some weak classifiers

RealBoost — properties
Demonstrate that:

1 expected value of exponential criterion:

EP

(
e−F(x)y

)
=

∫

x

∑
y∈{−1,1}

e−F(x)yP(y|x)p(x) dx (55)

(with respect to true joint distribution P) attains its minimum for:

F(x) =
1

2
log

P(y = 1|x)

P(y = −1|x)
; (56)

2 by minimizing exponential criterion

Zt =

m∑

i=1

wi,te
−ft(xi)yi (57)

in a greedy manner on each boosting round, one simultaneously minimizes that criterion
for the ensemble, i.e.:

1

m

m∑

i=1

e−F(xi)yi . (58)
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Boosting — variants and properties Connections with logistic regression

Logistic regression

A method for solving classification task via linear regression approach.

We want to “model” the conditional distribution P(y = 1|x) by applying somehow a linear
form a0 + a1x1 + · · · + anxn.

Problem: probabilities are bounded to [0, 1], whereas expression a0 + a1x1 + · · · + anxn is
unbounded.

Trick: instead of probabilities one can approximate logarithmic odds ratio:

log
P(y = 1|x)

1 − P(y = 1|x)
. (59)

By solving equation

a0 + a1x1 + · · · + anxn = log
P(y = 1|x)

1 − P(y = 1|x)
(60)

with respect to P(y = 1|x), one obtains logistic function:

P(y = 1|x) =
1

1 + e−(a0+a1x1+···+anxn)
(61)

(a.k.a. sigmoid function).
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Boosting — variants and properties Connections with logistic regression

Logistic regression

To solve logistic regression (to find a0, . . . , an) it is convenient to use yi ∈ {0, 1} instead of
yi ∈ {−1, 1}.
To simplify notation denote P(y = 1|x) as pi(xi).

We build likelihood function:

L =

m∏

i=1

p(xi)
yi

(
1 − p(xi)

)1−yi . (62)

Its maximum with respect to a0, . . . , an is in the same place as the maximum of
log-likelihood:

log L =

m∑

i=1

(
yi log p(xi) + (1 − yi) log

(
1 − p(xi)

))

...

=

m∑

i=1

(
yi(a0 + a1xi1 + · · · anxin) − log

(
1 + ea0+a1xi1+···anxin

))
. (63)
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Boosting — variants and properties Connections with logistic regression

Connection: RealBoost ∼ logistic regression

Consider expectation of exponential criterion taken with respect to true distribution P,
from which pairs (x, y) are drawn:

QP(F) = EP

(
e−yF(x)

)
=

∫

x

∑

y∈{−1,1}
e−yF(x)p(x, y) dx

=

∫

x

(
P(y=−1|x)eF(x)+P(y=1|x)e−F(x)

)
p(x) dx. (64)

We know that by demanding ∂QP(F)/∂F = 0 one obtains solution:

F∗(x) = 1/2 log
(
P(y=1|x)/P(y=−1|x)

)
(65)

(in fact, it suffices to minimize the inner expectation in (64) for conditional distribution
P(y = ±1|x)).

Note that F∗ is half the logit transform, typical for logistic regression.

If the learning algorithm was capable somehow of finding immediately (in one step) the
optimal function F∗ then the boosting procedure could be stopped after just one round.

In practice, weak classifiers are crude approximations of F∗, therefore multiple rounds
are needed.
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Boosting — variants and properties Connections with logistic regression

Connection: RealBoost ∼ logistic regression

Solving (65) with respect to P(y = 1|x) one obtains a form of sigmoid:

P(y = 1|x) = e2F∗(x)
/ (

1 + e2F∗(x)
)
= 1

/ (
1 + e−2F∗(x)

)
, (66)

— equivalent to logistic regression up to a constant factor of 2 in the exponent.

Logistic regression approximates F∗ by a linear model:

F∗(x) ≈ a0 + a1x1 + · · · + anxn. (67)

RealBoost approximates F∗ by a linear combination of weak classifiers:

F∗(x) ≈ f1(x) + · · · + fT(x), (68)

therefore by simple functions but possibly of multiple variables each.
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Boosting — variants and properties Connections with logistic regression

Connection: RealBoost ∼ error residuals

Consider the technique of error residuals known from regression.

Using it, we sequentially build an additive model, where each successive fragment of
approximation “explains” some part of the target quantity and becomes subtracted from it,
so that the next fragments concentrate on error residuals.

Reweighing scheme in boosting works analogically to error residuals.

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 118 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Boosting — variants and properties Connections with logistic regression

Connection: RealBoost ∼ error residuals
Suppose we have a partial model F and we want to update it to F := F + f .
Consider a population-based version of boosting (aware of distribution P).

For reweighing formulas based on data examples: Z = 1
m

∑m
i=1 e−yiF(xi), wi = e−yiF(xi)/Z, we

can define their population-based counterparts pertaining to P:

Z =

∫

x

∑

y∈{−1,1}
e−yF(x)p(x, y) dx; w(x, y) = p(x, y)e−yF(x)/Z. (69)

Z works as a normalizing constant, but simultaneously Z = QP(F) — optimization
criterion value for the model obtained so far.
Consider the value of criterion for F + f :

QP(F+f ) =

∫

x

∑

y∈{−1,1}
e−y(F(x)+f (x))p(x, y) dx

=

∫

x

∑

y∈{−1,1}
e−yf (x) e−yF(x)p(x, y)/Z

︸            ︷︷            ︸
w(x,y)

dx · Z=Qw(f ) ·QP(F). (70)

Conclusion: to minimize QP(F + f ) it suffices to greedily minimize Qw(f );
the current state of distribution w(x, y) indicates which places of target quantity are
already approximated well (“explained”) and which places still require approximation.
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Cascades of classifiers

Sketch of idea

Observation: negative windows are vast majority of all windows (commonly > 99.9%).

Therefore, it is worth to build simpler classifiers using fewer features serving to discard
negative windows faster.

Windows that appear promising (for positives) can be analyzed longer, using more
features.

A sequence of classifiers gets trained: F1
T1
,F2

T2
, . . ., forming a cascade — binary tree

degenerated to a list.

Sizes of successive classifiers in the cascaded form a non-decreasing sequence:
T1 6 T2 6 . . ..

Names for successive elements: stages, levels, layers.

Positive indication requires traversing all stages.

Negative indication on any stage stops further analysis.

P. Klęsk (WPUT, Poland) Fast object detection techniques backed with integral images 121 / 162

Research project no.: 2016/21/B/ST6/01495 (National Science Centre, Poland)



Cascades of classifiers

Scheme of cascade

all windows

1· · · recognized

as positives

windows discarded as negatives

F1
T1

−1

1
F2

T2

−1

1
F3

T3

−1

1
FK

TK

−1

1
windows

E.g. in (Viola & Jones, 2004): K = 32 stages with T1 = 2, T2 = 5, T3 = · · · = T5 = 20,
T6 = T7 = 50, T8 = · · · = T12 = 100, T13 = · · · = T32 = 200.

In total: 4 297 features, on average ≈ 8 features extracted per window.
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Cascades of classifiers

Final requirements and stage requirements

When training, one has to adjust decision thresholds θk which influence stage decisions:

sgn
(
Fk

Tk
(x) − θk

)
, so that each stage has very high sensitivity (a.k.a. detection rate), for

example > 99.9%, and moderately small false alarm rate (1− specifity), for example
< 50%.

Let d1, d2, . . . , dK denote a sequence of sensitivities for successive cascade stages, and
a1, a2, . . . , aK the corresponding sequence of FAR values.

Final sensitivity and FAR for the whole cascade are equal to:

D =

K∏

k=1

dk, (71)

A =

K∏

k=1

ak. (72)

Having imposed requirements for whole casced (i.e.. D, A), one can derive partial
requirements: dmin and amax for each stage.

E.g. for D = 0.98, A = 10−5 and K = 10, it suffices that each stage satisfies di > dmin = 0.998
(because 0.99810 > 0.98) and ai 6 amax = 0.316 (because 0.31610 6 10−5).
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Cascades of classifiers

Cascade learning algorithm — remarks

User imposes wanted stage requirements: dmin, amax.

Each stage is trained by a boosting algorithm (e.g. AdaBoost or RealBoost).

The number of classifiers for given stage is increased one-by-one until the stage satisfies
dmin, amax.

Quantities di, ai (sensitivity, FAR) obtained at current stage are measured on a separate
validation set.

After each weak classifier is added, the decision threshold θk becomes updated (typically
lowered), so that the wanted sensitivity is met: dk > dmin. In consequence, this also
increases the observed FAR i.e. ak.

The cascade is extended with new stages until the overall requirements D, A are met.

Remark 1: It is not clear if decision threshold updates do not worsen generalization capabilities.
Remark 2: Stop condition might not be reached.
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Cascades of classifiers

Cascade learning algorithm

1: algorithm TrainCascade(D,D,A, dmin, amax,V) ⊲ V— validating set

2: distinguish positive and negative subsets in data: P,N withinD
3: D0 := 1, A0 := 1, k := 0.
4: while Ak > A repeat ⊲ Ak — overall FAR for k initial stages

5: k := k + 1, Tk := 0, Ak := Ak−1, Fk := 0. ⊲ subindexes Fk
Tk

skipped

6: while Ak > amax · Ak−1 repeat
7: Tk := Tk + 1
8: use P andN to fit new weak classifier f , obtaining Fk := Fk + f
9: update θk for ensemble Fk, so that sensitivity for whole cascade is

10: Dk > dmin ·Dk−1, as follows: θk := Fk(V+)⌊(1−dmin)·#V+⌋,

11: where Fk(V+) denotes sorted sequence of real-valued responses
12: of Fk with respect to positive examples amongV ⊲ by that we also increase Ak

13: execute current cascade (F1,F2, . . . ,Fk) onV to measure its Dk and Ak

14: if Ak > A then
15: N := ∅.
16: execute current cascade (F1,F2, . . . ,Fk) on newly sampled windows
17: from negative images and add false alarms toN
18: otherwise
19: break
20: return cacscade (F1,F2, . . . ,Fk).
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Towards new results

New repertoire of features / integral images
1 Fast Fourier moments (Klęsk, 2017):

iicos
t,u (x, y) =

∑

16j6x

∑

16k6y

i(j, k) cos(· · · ; j, k, t,u), iisin
t,u (x, y) =

∑

16j6x

∑

16k6y

i(j, k) sin(· · · ; j, k, t,u).

(73)

(constant-time features; ≈ 2 times slower than HFs; more accurate than HFs in face detection)
2 Fast statistical moments (Klęsk & Bera, 2018):

iit,u(x, y) =
∑

16j6x

∑

16k6y

i(j, k)jtku. (74)

(constant-time features; ≈ 3 times slower than HFs)
3 Fast Zernike moments (Bera, Klęsk, & Sychel, 2018):

iit,u(x, y) =
∑

16j6x

∑

16k6y

i(j, k)(k − i j)t(k + i j)u, where i
2 = −1. (75)

(constant-time features; ≈ 12 times slower than HFs; rotationally invariant)

In all cases, computations faster than definition-style computations by > 103 times.
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Towards new results Fourier moments

FMs backed with integral images

A technique for constant-time calculation of low order Fourier moments, applicable in
detection tasks.

Real and imaginary parts of moments can be used as features.

Technique based on a set of special integral images involving trigonometric terms.

Additional time invested in integral images amortized during detection.

Extraction of each feature requires 21 operations, regardless of detection window size and
position — O(1) calculation.

Experiments on face detection: Fourier moments vs. Haar-like features.
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Towards new results Fourier moments

Fourier moments

Consider the following approximation, by a partial Fourier sum, of an image fragment
restricted to a rectangle spanning from (x1, y1) to (x2, y2):

i(x, y) ≈
∑

−n6kx6n

∑

−n6ky6n

c
kx ,ky

x1 ,y1
x2 ,y2

e
2πi

(
kx

x−x1
Nx
+ky

y−y1
Ny

)

,
x16x6x2
y16y6y2

; (76)

where: n — harmonic order of approximation, i =
√
−1 — imaginary unit, c — complex

coefficients, and Nx=x2−x1+1, Ny=y2−y1+1 — rectangle widths in pixels.

Best coefficients — the moments are:

c
kx ,ky

x1 ,y1
x2 ,y2

=
1

NxNy

∑

x16x6x2

∑

y16y6y2

i(x, y)e
−2πi

(
kx

x−x1
Nx
+ky

y−y1
Ny

)

. (77)
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Towards new results Fourier moments

Proposition
We introduce two sets of integral images:

{
ii

kx ,ky
cos
Nx ,Ny

}
,

{
ii

kx ,ky

sin
Nx ,Ny

}
,

constructed as:

ii
kx ,ky
cos
Nx ,Ny

(x, y) =
∑

16jx6x

∑

16jy6y

i(jx, jy) cos

(
−2π

(
kxjx

Nx
+

kyjy

Ny

))
, (78)

ii
kx ,ky

sin
Nx ,Ny

(x, y) =
∑

16jx6x

∑

16jy6y

i(jx, jy) sin

(
−2π

(
kxjx

Nx
+

kyjy

Ny

))
, (79)

where indexes (kx, ky) iterate over

{
(kx, ky) : −n 6 kx6−1,−n 6 ky6 n

}
∪

{
(0, ky) : −n 6 ky6−1

}
∪ {(0, 0)} . (80)

Each integral image can be calculated in linear time with respect to image size (induction).
Define the growth operator for any integral image from {iicos} or {iisin}:

∆x1 ,y1
x2 ,y2

(ii) = ii(x2, y2) − ii(x1 − 1, y2) − ii(x2, y1 − 1) + ii(x1 − 1, y1 − 1). (81)
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Towards new results Fourier moments

Proposition

Proposition 1

Suppose the two sets of integral images
{
ii

kx ,ky
cos
Nx ,Ny

}
,
{
ii

kx ,ky

sin
Nx ,Ny

}
, defined as in (78) and (79), have been

calculated prior to the detection procedure. Then, for any rectangle of widths Nx, Ny in the image, the real
and imaginary parts of each of its Fourier moments can be calculated in constant time — O(1) — as
follows:

Re


c

kx ,ky

x1 ,y1
x2 ,y2


 =

1

NxNy

(
cos

(
2π

(
kxx1

Nx
+

kyy1

Ny

))
∆x1 ,y1

x2 ,y2

(
ii

kx ,ky
cos
Nx ,Ny

)
− sin

(
2π

(
kxx1

Nx
+

kyy1

Ny

))
∆x1 ,y1

x2 ,y2

(
ii

kx ,ky

sin
Nx ,Ny

))
,

(82)

Im


c

kx ,ky

x1 ,y1
x2 ,y2


 =

1

NxNy

(
sin

(
2π

(
kxx1

Nx
+

kyy1

Ny

))
∆x1 ,y1

x2 ,y2

(
ii

kx ,ky
cos
Nx ,Ny

)
+ cos

(
2π

(
kxx1

Nx
+

kyy1

Ny

))
∆x1 ,y1

x2 ,y2

(
ii

kx ,ky

sin
Nx ,Ny

))
.

(83)

[in total 21 operations: 8 additions/subtractions, 8 multiplications, 3 divisions, and 2 trigonometric]
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Proposition
Proof: Rewrite the moments using Euler’s identity —

c
kx ,ky
x1 ,y1
x2 ,y2

=
1

NxNy

∑

x16x6x2

∑

y16y6y2

i(x, y)

(
cos

(
−2π

(
kx

x − x1

Nx
+ ky

y − y1

Ny

))
+ i sin

(
−2π

(
kx

x − x1

Nx
+ ky

y − y1

Ny

)))
. (84)

Part the argument of the trigonometric functions into a group of terms independent from the pixel index (x, y) and a group
dependent on it as follows:

α = 2π
(
kxx1/Nx + kyy1/Ny

)
, β(x, y) = −2π

(
kxx/Nx + kyy/Ny

)
.

Apply in (84) the trigonometric identities for cos(α + β) and sin(α + β). Simultaneously, pull terms cosα and sinα in front of
summations — independent of the pixel index (x, y). Finally, split the expression into real and imaginary parts:

Re


c

kx ,ky
x1 ,y1
x2 ,y2


=

1

NxNy

(
cosα

∑
x16x6x2
y16y6y2

i(x, y) cos β(x, y)

︸                             ︷︷                             ︸

∆x1 ,y1
x2 ,y2

(
ii

kx ,ky
cos
Nx ,Ny

)

− sinα
∑

x16x6x2
y16y6y2

i(x, y) sin β(x, y)

︸                             ︷︷                             ︸

∆x1 ,y1
x2 ,y2

(
ii

kx ,ky
sin
Nx ,Ny

)

)
,

Im


c

kx ,ky
x1 ,y1
x2 ,y2


=

1

NxNy

(
sinα

∑
x16x6x2
y16y6y2

i(x, y) cos β(x, y)

︸                             ︷︷                             ︸

∆x1 ,y1
x2 ,y2

(
ii

kx ,ky
cos
Nx ,Ny

)

+ cosα
∑

x16x6x2
y16y6y2

i(x, y) sin β(x, y)

︸                             ︷︷                             ︸

∆x1 ,y1
x2 ,y2

(
ii

kx ,ky
sin
Nx ,Ny

)

)
.

Underbraces show how the expensive summations over pixels get replaced by constant-time growths of integral images. �
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Producing more features
Constant-time extraction owed to additional costs invested in integral images.
Needed number of integral images: (2n + 1)2 + 1, since both iicos, iisin are required for
each kx, ky pair — potentially expensive, hence low harmonic orders (e.g. n = 1, 2, 3).
We partition windows into regular p × p grids of rectangles:

original

96 × 96

n = 4 (p = 1)

features: 81

n = 5 (p = 1)

features: 121

n = 6 (p = 1)

features: 169

n = 7 (p = 1)

features: 225

feats/pxs: 0.0088

MAE: 0.0711

feats/pxs: 0.0131

MAE: 0.0600

feats/pxs: 0.0183

MAE: 0.0554

feats/pxs: 0.0244

MAE: 0.0506

original

96 × 96

n = 0 (p = 7)

features: 49

n = 1 (p = 7)

features: 441

n = 2 (p = 7)

features: 1 225

n = 3 (p = 7)

features: 2 401

feats/pxs: 0.0059

MAE: 0.0833

feats/pxs: 0.0533

MAE: 0.0496

feats/pxs: 0.1479

MAE: 0.0377

feats/pxs: 0.2899

MAE: 0.0305

Features extracted from each rectangle — piecewise Fourier approximation.
Total number of features: d(n, p) = (2n + 1)2p2.
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Experimental setup

Four variants of Fourier-based face detectors:
(1) n = 2, p = 5 (625 feats.),
(2) n = 2, p = 7 (1 225 feats.),
(3) n = 3, p = 5 (1 225 feats.),
(4) n = 3, p = 7 (2 401 feats.)

Haar-like opponents (5 templates, q scales per axis, same grid sizes):
(1) q = 3, p = 5 (1 125 feats.),
(2) q = 3, p = 7 (2 000 feats.),
(3) q = 4, p = 5 (2 205 feats.),
(4) q = 4, p = 7 (3 920 feats.)

Train data: 7 258 positive examples, 100 000 negative examples.

Learning algorithm: RealBoost + bins, ensemble sizes: T = 256 or T = 512.

Test data: 70 252 859 windows within 500 images containing 1 000 faces.

To conveniently generate ROCs a test subset generated with 2 · 106 negatives
→ precision along FAR axis: 5 · 10−7.

Detection procedure 1 (“heavy”): ≈ 151 000 windows
(8 scales, sliding window 48 × 48 up to 172 × 172, jumps ratio 0.05).

Detection procedure 2 (“light”): ≈ 11 000 windows
(4 scales, sliding window 120 × 120 up to 207 × 207, jumps ratio 0.05)

Software written in C# with key procedures in C++ as dll libraries.
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Examples of outcomes (Fourier moments)
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Examples of outcomes (Fourier moments)
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Examples of outcomes (Fourier moments)
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Examples of false alarms
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Some examples FMs vs. HFs (errors)

Fourier Moments (FMs) Haar-like Features (HFs)
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Some examples FMs vs. HFs (errors)

Fourier Moments (FMs) Haar-like Features (HFs)
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Some examples FMs vs. HFs (errors)
Fourier Moments (FMs)Haar-like Features (HFs)
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ROC curves
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ROCS: FM (625) vs. HF (1125)

HF q=3, p=5 (1125); T=512

HF q=3, p=5 (1125); T=256

FM n=2, p=5 (625); T=512

FM n=2, p=5 (625); T=256
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ROCS: FM (1225) vs. HF (2000)

HF q=4, p=5 (2000); T=512

HF q=4, p=5 (2000); T=256

FM n=3, p=5 (1225); T=512

FM n=3, p=5 (1225); T=256
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ROCS: FM (1225) vs. HF (2205)

HF q=3, p=7 (2205); T=512

HF q=3, p=7 (2205); T=256

FM n=2, p=7 (1225); T=512

FM n=2, p=7 (1225); T=256
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ROCS: FM (2401) vs. HF (3920)

HF q=4, p=7 (3920); T=512

HF q=4, p=7 (3920); T=256

FM n=3, p=7 (2401); T=512

FM n=3, p=7 (2401); T=256
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Accuracy measures

name / description AUCα sensiti- FAR FAR accuracy

α=10−5 α=10−4 α=10−3 vity per

image

per

window

per

window

HF q=3, p=5 (1125); T=512 0.6761 0.8123 0.9156 0.699 0.098 6.975·10−7 0.999995018084708

FM n=2, p=5 (625); T=512 0.8401 0.9236 0.97144 0.889 0.092 6.548·10−7 0.999997765249097

HF q=4, p=5 (2000); T=512 0.8021 0.9082 0.9624 0.849 0.086 6.121·10−7 0.999997238589628

FM n=3, p=5 (1225); T=512 0.8475 0.9285 0.9703 0.872 0.054 3.843·10−7 0.999997793717795

HF q=3, p=7 (2205); T=512 0.7075 0.8376 0.9320 0.741 0.084 5.978·10−7 0.999995715550288

FM n=2, p=7 (1225); T=512 0.8800 0.9480 0.9826 0.924 0.058 4.128·10−7 0.999998505420626

HF q=4, p=7 (3920); T=512 0.8188 0.9141 0.9729 0.897 0.102 7.234·10−7 0.999997815602899

FM n=3, p=7 (2401); T=512 0.8965 0.9538 0.9845 0.951 0.062 4.397·10−7 0.999998865248259
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Time performance — “heavy” procedure

quantity (or operations)

Fourier moments (T = 512)

(456 distinct feats.)

Haar-like features (T = 512)

(472 distinct feats.)

no. of analyzed windows 151 385 151 385

no. of prepared integral images
400

(50 images per each of 8 scales) 1

preparation time for integral images 421 ms 6 ms

preparation time per 1 integral image 1.05 ms 6 ms

total time of detection procedure 1 190 ms 513 ms

time per 1 window 7.86µs (amortized: 5.08µs) 3.38µs (amortized: 3.34µs)

time per 1 window and 1 feature 17.59 ns (amortized: 11.36 ns) 6.83 ns (amortized: 6.75 ns)

[640 × 480 image; parallel computations on: Intel Xeon E3-1505M v5 4×2-core 2.80 (3.70) GHz CPU;]

[cascade of classifiers not used]
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Time performance — “light” procedure

quantity (or operations)

Fourier moments (T = 512)

(456 distinct feats.)

Haar-like features (T = 512)

(472 distinct feats.)

no. of analyzed windows 11 838 11 838

no. of prepared integral images
200

(50 images per each of 4 scales) 1

preparation time for integral images 219 ms 6 ms

preparation time per 1 integral image 1.10 ms 6 ms

total time of detection procedure 308 ms 83 ms

time per 1 window 26.02µs (amortized: 7.52µs) 7.01µs (amortized: 6.50µs)

time per 1 window and 1 feature 58.21 ns (amortized: 16.82 ns) 14.16 ns (amortized: 13.14 ns)

[640 × 480 image; parallel computations on: Intel Xeon E3-1505M v5 4×2-core 2.80 (3.70) GHz CPU;]

[cascade of classifiers not used]
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FMs — conclusions

1 Algorithmic result for detection tasks: a computational technique for constant-time
extraction of low order Fourier moments, based on special integral images.

2 Experiments have shown that fairly small sets of Fourier-based features can surpass
Haar-like features in terms of accuracy in face detection task.

3 Approach can be beneficial in machine learning applications where accuracy is of
primary importance rather than real-time (e.g.: medical diagnosis, image-based fault
detection, landmine detection) .

4 Real-time could be achieved with: cascade of classifiers +more parallelism (e.g. more
CPU cores) to prepare integral images.
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Paper on constant-time Zernike Moments

A. Bera, P. Klęsk, and D. Sychel: “Constant-time Calculation of Zernike Moments for
Detection with Rotational Invariance”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
DOI: 10.1109/TPAMI.2018.2803828, ISSN: 0162-8828, 2018.

· · ·

Impact Factor: 8.3, #1-ranked journal
Computer Vision and Pattern Recognition (1/66),
Computational Theory and Mathematics (1/97),
Software (1/367),
Artificial Intelligence (1/152),
Applied Mathematics (1/398)
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High-level intuition — scenario A

Scenario A: standalone detector invariant to rotation

TRAIN
positives upright

±45◦ random rotations:

negatives:

↓
machine learning→

TEST
generalization onto any rotation angle (360◦)

test input image

↓
complex-valued

integral images

↓
detection

procedure

(constant-time

features invariant

to rotation

based on ZMs)�

detector (red)

→

after postprocessing (grouping)
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High-level intuition — scenario B

Scenario B: prescreener invariant to rotation + angle-dependent classifiers

TRAIN
positives upright

±45◦ random rotations:

negatives:

↓
machine learning→

TEST
generalization onto any rotation angle (360◦)

test input image

↓
complex-valued

integral images

↓
detection

procedure

(constant-time

features invariant

to rotation

based on ZMs)�

prescreener (gray)+angle-dependent classifs. (gray→red)

→

after postprocessing (grouping)
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Zernike polynomials and moments

Zernike polynomials (ZPs): set of orthogonal, complex-valued functions over unit disk
in polar coordinates (F. Zernike, 1934).

Products of: standard polynomials over radius and harmonic terms over angle.

Obtained via G-S orthogonalization for: {1, reiθ, r2, r2e2iθ, r3eiθ, r3e3iθ, r4, r4e2iθ, r4e4iθ, . . .}.

Vp,q(r, θ) = Rp,q(r)Fq(θ)

=

(p−|q|)/2∑

s=0

βp,q,sr
p−2seiqθ,

where

βp,q,s =
(−1)s(p − s)!

s!
(
(p + q)/2 − s

)
!
(
(p − q)/2 − s

)
!
.
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Zernike polynomials and moments

Zernike moments (ZMs): coefficients of expansion (of function / image) in terms of ZPs.

i(r, θ) =
∑

06p6∞

∑

−p6q6p
p−|q| even

Mp,qVp,q(r, θ) ≈
∑

06p6ρ

∑

−min{p,̺}6q6min{p,̺}
p−|q| even

Mp,qVp,q(r, θ) (85)

Optimal coefficients — ZMs:

Mp,q =
p + 1

π

∫ 2π

0

∫ 1

0
i(r, θ)

∑

−p6q6p
p−|q| even

βp,q,sr
p−2se−iqθr dr dθ. (moduli invariant to rotation) (86)
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Zernike moments for image windows
Discrete version of ZMs for image window of size w × w:

M2p+o,2q+o ≈ M̂2p+o,2q+o =
2(p+1)

πw2

∑∑

06j6w−1
06k6w−1

i(j, k)
∑

2q+o62s+o62p+o

β2p+o,2q+o,p−s(xk + iyj)
s−q(xk − iyj)

s+q+o,

(87)

where: xk =
2k−(w−1)

w
√

2
, yj =

w−1−2j

w
√

2
, 0 6 k, j 6 w − 1.

Can ZMs be backed with integral images and applied in a detection procedure?

Is it possible to design such cumulants in the single global system of Cartesian
coordinates that shall later allow for extracting features (invariant to rotation) in many
local systems of polar coordinates at the level of each window?
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ZMs — our main result

Proposition 2

Suppose a set of integral images
{
iit,u

}
, defined as in (75), has been prepared prior to the detection

procedure. Then, for any square window in the image, each of its Zernike moments can be calculated in
constant time — O(1), regardless of the number of pixels in the window, as follows:

M̂2p+o,2q+o =
4p + 2o + 2

πw2

∑

2q+o62s+o62p+o

β2p+o,2q+o,p−s

(√
2

w

)2s+o

·
s−q∑

t=0

(
s − q

t

)
(−kc + i jc)s−q−t

s+q+o∑

u=0

(
s + q + o

u

)
(−kc − i jc)s+q+o−u ∆

j0 ,j0+w−1
k0 ,k0+w−1

(
iit,u

)
, (88)

where w denotes the width and (jc, kc) the central index of the window.
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Experimental setup

Typical settings:

Learning algorithm: RealBoost + bins or RealBoost + decision trees.

Detectors: ensembles of 256 or 512 classifiers.

Training set sizes: ≈ 10 000 positives, 100 000 negatives.

Training duration: ≈ 2 h to 6 h.

Image / video resolution: 640 × 480.

Detection procedure (heavy): ≈ 151 000 windows
(8 scales, sliding window 48 × 48 up to 172 × 172, jumps ratio 0.05).

Detection procedure (light): ≈ 11 000 windows
(4 scales, sliding window 120 × 120 up to 207 × 207, jumps ratio 0.05).

Software: C# and C++ (crucial computational procedures as dlls).
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“Synthetic airplanes”
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"SYNTHETIC AIRPLANES" ROCs

ZMs: (144) [6, 6, 5]; RB+DT: T = 256, B = 8
ZMs: (176) [6, 6, 6]; RB+DT: T = 256, B = 8
ZMs: (180) [7, 7, 5]; RB+DT: T = 256, B = 8
ZMs: (220) [7, 7, 6]; RB+DT: T = 256, B = 8

ZMs (220) [7, 7, 6], B = 8, T = 256

quantity (or operations) time or amount

no. of analyzed windows 150 849

total time of detection procedure 847 ms

no. of prepared integral images 20
preparation time of all integral images

(complex-valued) 106 ms

preparation time per 1 integral image 5.3 ms

time per 1 window 5.615µs (amortized: 4.912µs)

no. of distinct features used by ensemble 219

time per 1 window and 1 feature 25.64 ns (amortized: 22.43 ns)

“Synthetic airplanes”: time performance for a 640 × 480 image

(parallel computations on: Intel Xeon E5-2699 v4 CPU, 22/44 c/t, 55 MB cache).
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“Letter A”
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"LETTER A" ROCs

ZMs: (176) [6, 6, 6]; RB+DT: T = 512, B = 8
ZMs: (275) [8, 8, 6]; RB+DT: T = 512, B = 8
ZMs: (375) [8, 8, 8]; RB+DT: T = 512, B = 8
ZMs: (540) [10, 10, 8]; RB+DT: T = 512, B = 8

ZMs (540) [10, 10, 8], B = 8, T = 512

quantity (or operations) time or amount

no. of analyzed windows 18 588

total time of detection procedure 289 ms

no. of prepared integral images 25
preparation time of all integral images

(complex-valued) 132.8 ms

preparation time per 1 integral image 5.31 ms

time per 1 window 15.5µs (amortized: 8.42µs)

no. of distinct features used by ensemble 375

time per 1 window and 1 feature 41.46 ns (amortized: 22.45 ns)

“Letter A”: time performance for a 640 × 480 image

(parallel computations on: Intel Xeon E5-2699 v4 CPU, 22/44 c/t, 55 MB cache).
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“Faces”
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"FACES" ROCs

ZMs: (616) [13, 13, 6]; RB+DT: T = 512, B = 8
ZMs: (441) [12, 12, 5]; RB+DT: T = 512, B = 16
ZMs: (735) [12, 12, 8]; RB+DT: T = 512, B = 16
ZMs: (840) [13, 13, 8]; RB+DT: T = 512, B = 16
HFs: (10125) [90)11.25+]; RB+B: T = 512, B = 8

ZMs (840) [13, 13, 8], B = 16, T = 512

quantity (or operations) time or amount

no. of analyzed windows 150 849

total time of detection procedure 2 543 ms

no. of prepared integral images 56
preparation time of all integral images

(complex-valued) 263 ms

preparation time per 1 integral image 4.7 ms

time per 1 window 16.86µs (amortized: 15.11µs)

no. of distinct features used by ensemble 331

time per 1 window and 1 feature 50.93 ns (amortized: 45.66 ns)

total time of 16 angular classifiers 294 ms

vs

16 complete scans with HFs (1 025), B = 8, T = 512

no. of analyzed windows in total 2 413 584

total time 16 detection procedures 4 752 ms

preparation time of 1 integral image 6 ms

time per 1 detection procedure 297 ms

time per 1 window 1.97µs

average no. of distinct features used by ensemble 495

time per 1 window and 1 feature 3.98 ns
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ZMs — conclusions

1 Algorithmic result for detection tasks: a computational technique for constant-time
extraction of Zernike moments, backed with complex-valued integral images.

2 Suitable for detection procedures where rotational invariance is a requirement.

3 Proposed additional refinements: complex-conjugacy of integral images, speed-up
possibilities using LUTs.

4 Equivalent representation for Fourier–Mellin moments not feasible.

5 Future work: analysis of numerical errors, product invariants of form: Mk
p,q ·Mr,s,

kq + s = 0.
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