Evolution Strategies $(\mu / \varrho+\lambda)$-ES for test functions optimization

1 Evolution Strategies in version (1+1)-ES

```
population \(\leftarrow\) initialize \((\mu)\)
\(g \leftarrow 0\)
while terminal_condition not TRUE do
    offspring \(\leftarrow\) prepare \((\lambda)\)
    for \(o=1\) to \(\lambda\) do
        parents \(\leftarrow\) marriage (population, \(\varrho\) )
        \(s \leftarrow s\) _recombination (parents)
        \(x \leftarrow x \_r e c o m b i n a t i o n(p a r e n t s)\)
        \(s \leftarrow s \_m u t a t i o n(s)\)
        \(x \leftarrow x \_\)mutation \((x, s)\)
        \(f \leftarrow\) fitness_function \((x)\)
        of \(f\) spring \(_{o} \leftarrow \operatorname{struct}(x, s, f)\)
    end for
    population \(\leftarrow\) selection (offspring \(+\mu\) )
    \(g \leftarrow g+1\)
end while
return population
```


2 Algorithm description

- initialize (μ) returns the μ individuals, which could be a structure/object:
- x - vector with d numbers which represents optimization function arguments point in the domain space. $\left.\Re^{n}\right)$. Initialized randomly from uniform distribution and the range $=$ domain.
- s-vector with d numbers which represents standard deviation to control the mutation strength in every dimention. Initialized randomly from uniform distribution and the range $=[0.1: 10]$.
- function - fitness function (calculated from the formula e.g. Schwefel function)
domain is a given domain for a specific test function (benchmark) that will be solved by ES.
- Initial parameters
- μ-number of individuals in the population: recommended values from 1 to 100
- ϱ - number of individuals in the pool of parents for reproduction: recommended values from 1 to μ
$-\lambda$ - the number of offsprings: recommended values from 1 to 100 .
- max_num_gen - maxim number of generations e.g. 10000
- A teminal_condition control maximum number of steps or finding the solution close to the know global optimum e.g. fitness_function(best) $-f _$global $<0,0001$.
- Selection of the pool of parents
function parents $=$ marriage $($ population, $\varrho)$
parents \leftarrow prepare (ϱ)
2: selected_individuals \leftarrow randperm (length (population))
3: for $i=1$ to ϱ do
parents $_{i} \leftarrow$ population $_{\text {selected_individuals }}^{i}$
end for
return parents
- Pseudo-code of the recombination algorithm for endogenous parameters
function $s=s$ _recombination (parents)
1: $n \leftarrow$ length (parents.s)
2: $s \leftarrow \operatorname{prepare}(n)$
3: for $i=1$ to n do
4: $\quad s_{i} \leftarrow$ mean_s $($ parents,$i)$
5: end for
6: return s
where: mean_s (parents, i) is the average value of all the parents.
- Pseudo-code of recombination
function $x=x$ _recombination (parents)
$n \leftarrow$ length (parents)
2: $x \leftarrow$ prepare (n)
3: for $i=1$ to n do
4: $\quad x_{i} \leftarrow$ mean_x $($ parents,$i)$
5: end for
6: return x
where, mean_x (parents, i) is the average value of all the parents.
- Endogenous parameters mutation
function out_s=s_mutation (s)
1: $n \leftarrow$ length (s)
2: out_s \leftarrow prepare (n)

```
c\leftarrow1
    \tau0}\leftarrow\mp@subsup{e}{}{\frac{c}{\sqrt{}{2n}}\cdot*(0,1)
    \tau}\leftarrow\frac{c}{\sqrt{}{2\sqrt{}{n}}
    6: for }i=1\mathrm{ to }n\mathrm{ do
7: out_}\mp@subsup{s}{i}{}\leftarrow\mp@subsup{\tau}{0}{}\cdot\mp@subsup{s}{i}{}\cdot\mp@subsup{e}{}{\tau\cdot\aleph(0,1)
8: end for
9: return out_s
```

where:
$-\aleph(0,1)$ is a random number from a normal distribution with the mean equal to 0 and standard deviation of 1

- variable c is positive number could be set to 1 .
- Problem parameters mutation
function out_ $x=x$ _mutation (x, s)
1: $n \leftarrow$ length (y)
2: out_ $x \leftarrow$ prepare (n)
3: for $i=1$ to n do
4: \quad out_ $x_{i} \leftarrow x_{i}+s_{i} \cdot \aleph(0,1)$
5: end for
6: return out x
where, $\aleph(0,1)$ is a random number from a normal distribution with the mean equal to 0 and standard deviation of 1
- Selection called plus (+)
function new_population $=$ selection (offspring, population, μ)
1: new_population $\leftarrow \operatorname{sort}([$ offspring, population $]$, ascd $)$
2: new_population \leftarrow new_population $(1: \mu)$
3: return new_population

3 Benchmarks

To test the algorithm the following function should be used:

1. RASTRIGIN FUNCTION

- http://www.sfu.ca/~ssurjano/rastr.html,
- domain $=[-5.12,5.12]$
- Global minimum $f(0,0, \ldots, 0)=0$

2. GRIEWANK FUNCTION

- http://www.sfu.ca/~ssurjano/griewank.html,
- domain $=[-600,600]$
- Global minimum $f(0,0, \ldots, 0)=0$

3. SPHERE FUNCTION

- http://www.sfu.ca/~ssurjano/spheref.html,
- domain $=[-5.12,5.12]$
- Global minimum $f(0,0, \ldots, 0)=0$

4. ZAKHAROV FUNCTION

- http://www.sfu.ca/~ssurjano/zakharov.html,
- domain $=[-5,10]$
- Global minimum $f(0,0, \ldots, 0)=0$

5. EASOM FUNCTION

- http://www.sfu.ca/~ssurjano/easom.html,
- domain $=[-100,100]$
- Global minimum $f(\pi, \pi)=-1$

6. STYBLINSKI-TANG FUNCTION

- http://www.sfu.ca/~ssurjano/stybtang.html,
- domain $=[-5,5]$
- Global minimum $f(-2.903534, \ldots,-2.903534)=-39.16599 d$, where d is dimention

