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Preface

Search algorithms constitute a significant part in studies on artificial intelligence. From a historical
perspective, pathfinding and chess come to mind as probably two most natural examples where
search algorithms have been applicable with success. These examples are also good representatives
for the two general groups of search problems that the SaC library attempts to solve, namely:

1. discrete (combinatorial) optimization problems, where a problem can be represented as a
graph of states, and finding its solution brings down to searching;

2. two-person games problems, where one looks for the best move or decision in a game or a
situation of conflict, which can be represented as a game tree.

Fig. Eﬂillustratively depicts the two groups.

examples of discrete (combinatorial) optimization problems:
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Figure 1: Illustration of two groups of search problems tackled by SaC.

As regards the first group, on one hand it includes various types of geographical or physical
graphs where some object can move from one location to another. One may think here of examples

mages acquired from the Google Images search engine.
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like: shortest path finding (for different means of transport), routing problems (internet routing,
vehicle routing), traversing mazes, etc. On the other hand, this group includes also a variety of
abstract graphs related to puzzles or riddles, combinatorial by nature, where by certain manip-
ulations we can change the state of some object. We would like to discover a sequence of such
manipulations which brings the object to a solution state with some desired properties. One may
think here of many recreation examples like: Rubik’s cube, sliding puzzle, sudoku, solitaires; but
also of more practical problems in technology like: spatial packing problems (2D or 3D), optimal
material cutting, arranging schedules, resource planning, etc.

As regards the second group, the straightforward examples are mind games e.g.: chess, check-
ers, GO, Hex, Nim, tic-tac-toe, and many others. Beside those, one may indicate some examples
taken from the game theory, like the famous prisonner’s dilemma, but also: bargaining problems,
political conflicts, competition wars between companies, etc.

In games, a player at a given game position (a state) typically has some number of possible
moves at disposal which transfer the game to new positions. In each of these positions the opponent
has a number of counter-moves, and this scheme continues. A tree structure representing the game
arises in a natural manner. Due to the exponential growth of game trees, computer programs are
in practice limited to going over only a small portion of a whole tree. Usually, the analysis must
be ended up after just several levels of depth. Then, by assigning some numerical evaluations to
terminal positions — being the consequences of moves made at the root of the tree — the algorithm
is able to indicate the most promising move. It is worth to remark that not only mind games can
be analyzed in this manner. Many computer games, usually strategy games, but possibly even
arcade ones or shooters, can be subjected to that scheme if only rules of a game are well defined
and a finite set of moves can be formulated at decision moments.

Aim and purposes

In the programmer’s eye search algorithms share many common elements, despite some differ-
ences (usually minor ones). Therefore, the main idea behind the Search and Conquer (SaC) library
was to propose a set of interfaces and classes — the API — which would unify and facilitate the
way search algorithms are carried out. Java was the selected language for the library. Although
is it easy to look up on the Internet examples of implementations (also in Java) of some search
algorithms, these examples are typically disconnected from one another, and coded with the focus
on a specific problem, so with little generality.

The intention of authors was to design the SaC library in such a manner that its future users,
not necessarily skilled programmers, would be able to ‘hook up” with ease their own specific
problems to the library. By that we mailny mean that to formulate and to solve a particular search
problem requires possibly very little of the programming effort on the user’s part.

Currrently, in SaC there are nine implementations, ready to be executed, of well known search
algorithms — six for graphs (Breadth-first search, Depth-first search, Dijkstra’s algorithm, Best-first
search, A*, IDA) and three for games (Min-Max, alpha-beta pruning, Scout). At disposal are also
some extras (configuration options, selection of data structures involved) that lead to variations of
the default search performance. Additionally, the library comes with a set of examples included in
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the sac.examples package. Among them there are console solvers for: sliding puzzle, traveling
salesman problem, sudoku; and two-person game applications (with a simple GUI) for: checkers
and Nim.

The central ‘actor” in SaC is the sac.State interface. It represents an abstract state in some
graph or some game tree. The rest of the object oriented API is built up around this interface.

From the user’s perspective, in order to execute a search algorithm it is sufficient to describe
the particular search problem by defining — i.e. providing implementations for — the following
elements.

1. Generation of descendants — What new states (direct descendants) can be generated from a given
state?

2. Identification — What identifiers (string or integer representations) can be assigned to states, so
that the same state is not visited multiple times unnecessarily?

3. Termination — Is given state a terminal? le. a solution state (graphs) or a win state (game trees).

3’. Heuristics (optional) — An estimation how far a state is from the solution (graphs), or an evaluation
whether the state represents some advantage for the maximizing or the minimizing player (game trees).

In SaC, suitable places are prepared for the above purposes. We have assigned the number 3’
to the last element — heuristics, since it can be viewed as an extension of the element no. 3 —
termination.

We see three potential groups of users that might be interested in SaC. Firstly — people, not
necessarily computer scientists, needing to solve some engineering or technological optimization
problem. Secondly — computer games programmers, in particular programmers of games for
mobile devices (the choice of Java may be a friendly factor). Thirdly — academic communities,
using the mentioned algorithms in research or didactics.

Acknownledgements

The SaC library has been developped as a subproject within a larger academic project named TEWI
(Polish abbrevation for Telekomunikacja Edukacja Wiedza Innowacje, translatable as: Telecommuni-
action Education Knowledge Innovations), financed by the European Fund for Regional Develop-
ment (POIG.02.03.00-00-028/09), see http://www.wi.pb.edu.pl/index.php/projekty-ue/tewi
and http://tewi.p.lodz.pl.

The goal of TEWI was to create a web platform gathering open source software projects, from
various domains, developped by Polish academic communities. The project has been conducted
by a consortium managed by the £6dZ University of Technology, and involved the following
partners: Biatystok Technical University, Warsaw University of Technology, Gdarisk University of
Technology, £6dZ Univeristy of Computer Sciences and Skills, Cracow University of Technology,
West Pomeranian University of Technology in Szczecin, Polish-Japanese Institute of Information
Technology.
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As regards the SaC project itself, it has been programmed in the Java language, using the
Java SE 7 (1.7.0) version. Java is a product and a trademark of the Oracle company (http:
//www.oracle.com).

The authors would like to thank the creators of the following projects and libraries that con-
tributed to SaC:

o Graphviz — a free software for automatic graph drawing, see http://www.graphviz.org. In
SaC, we enable a possibility to generate output text files, compliant with the Graphviz lan-
guage. The files contain represenations of graphs or trees that were searched by a particular
algorithm. Having such a file and the Graphviz software installed, the user can produce
visualizations using one of Graphviz engines like dot, neato, etc. We used Graphviz in its
2.38 version. All graph / tree illustrations presented throughout this user guide have been
produced using Graphviz;

o jFreeChart — a free library which allows to generate and display charts from the Java
code, see http://www.jfree.org/jfreechart. In SaC, we take advantage of jFreeChart
in two contexts: (1) when displaying graphical monitors showing the progress of an ongo-
ing graph search procedure, (2) when producing bar charts or xy plots based on statistics
collected from some large experiment (e.g. a comparison of multiple algorithms or heuristics
on multiple instances of some search problem). We used jFreeChart in its 1.0.14 version
(jfreechart-1.0.14. jar);

o jCommons — a project offering generally reusable Java components http://www. jcommons.
sourceforge.net. In SaC, the jCommons library is needed as a prerequisite for jFreeChart.
We used jCommons in its 1.0.17 version (jcommon-1.0.14. jar).

o SWT (Standard Widget Toolkit) — an open source widget toolkit for Java designed to provide
efficient, portable access to the user-interface facilities of the operating systems on which
it is implemented, see http://www.eclipse.org/swt. In SaC, the SWT is used in simple
demo-Als built for the games of checkers and Nim.


http://www.oracle.com
http://www.oracle.com
http://www.graphviz.org
http://www.jfree.org/jfreechart
http://www.jcommons.sourceforge.net
http://www.jcommons.sourceforge.net
http://www.eclipse.org/swt

Chapter 1

Getting started

1.1 Installation and requirements

Since SaC is a Java library, placed in a jar file, there is no explicit installation procedure whatsoever.
In other words, the user is supposed to simply download the library and attach it to his Java project,
where he intends to use SaC and its searching capabilities.

This user guide document was written along with the first version of SaC distribution, num-
bered as 1.0.0. The sac-1.0.0-dist.zip file (to be downloaded) encapsulates the whole distribi-
tion, and contains the following elements.

The library files:

e sac-1.0.0.jar — the main SaC library file,
e jfreechart-1.0.14.jar — a prerequisite library,
e jcommon-1.0.14.jar — a prerequisite library,
e swt.jar — a prerequisite library (64 bit version),
the documantation (javadoc) and source files:
e sac_doc.zip,
® sac_src.zip,
the UML class diagram — a high-level view on SaC’s main elements:
e sac_uml.pdf,
examples (templates) of configuration files:
e graph_configurator_example.properties,

e game_configurator_example.properties,
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and finally, a few .bat files (for Windows) executing examples of SaC ready-made solvers / pro-
grammes:

e run_sudoku.bat,

e run_slidingpuzzle.bat,
e run_tsp.bat,

e run_rectpacking.bat,

e run_checkers.bat,

e run_nim.bat.
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1.2 “Hello world” for a graph

Suppose we have at disposal the following Java class to represent directed graphs with weights
(the class is not related to SaC itself).

public class DirectedGraph {

private double[][] costs;
private int goal;

public DirectedGraph(int howManyNodes, int goal) {
costs = new double[howManyNodes][howManyNodes];
for (int i = 0; i < howManyNodes; i++)
for (int j = 0; j < howManyNodes; j++)
costs[i]J[j] = Double.POSITIVE_INFINITY;
this.goal = goal;
}

public void addEdge(int i, int j, double cost) {
costs[i][j] = cost;

}

public double[][] getCosts() {
return costs;

}

public int getGoal() {
return goal;
}
}

It uses a two-dimensional array (double[][] costs) to store costs of transitions between particular
nodes — in other words to model the edges. The symbolic infinity (Double.POSITIVE_INFINITY)
indicates the lack of an edge. The index of the target node to be reached is kept in the field named
goal. Obviously, the presented implementation is just an example and many other possibilities
may come to mind. Up to now SaC is not involved anyhow.

Now, consider a graph created by the code below and depicted in Fig. Suppose we would
like to be able to search this graph (or other graphs alike, stored as DirectedGraph) using SaC.

DirectedGraph myGraph new DirectedGraph(7, 6);

myGraph.addEdge(®, 1, 3.0);
myGraph.addEdge (0, 2, 1.0);
myGraph.addEdge (0, 5, 2.5);
myGraph.addEdge(1l, 3, 2.0);
myGraph.addEdge (1, 4, 1.5);
myGraph.addEdge (2, 1, 1.0);
myGraph.addEdge (2, 4, 3.0);
myGraph.addEdge (3, 7, 1.0);
myGraph.addEdge (4, 7, 2.0);
myGraph.addEdge(5, 6, 4.0);
myGraph.addEdge(6, 7, 0.5);
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Figure 1.1: “Hello world” graph to be travalled from node 0 (initial) to node 7 (goal) .

To apply SaC and its searching capabilities we prepare the following class.

public class HelloWorldGraphState extends GraphStateImpl {

public static DirectedGraph dg = null;
private int i; // current node

public HelloWorldGraphState(int i) {
this.i = i;

}

@Override

public List<GraphState> generateChildren() {
List<GraphState> children = new ArrayList<GraphState>();
double[][] costs = dg.getCosts();
for (int j = 0; j < costs.length; j++)

if (costs[i][j] < Double.POSITIVE_INFINITY)
children.add(new HelloWorldGraphState(j));

return children;

}

@Override

public int hashCode() {
return i;

}

@Override

public boolean isSolution() {
return (i == dg.getGoal());

}

@Override
public String toString() {
return Integer.toString(i);

}
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static {
setGFunction(new StateFunction() {

@Override
public double calculate(State state) {
HelloWorldGraphState hwgs = (HelloWorldGraphState) state;
HelloWorldGraphState parent = (HelloWorldGraphState) hwgs.getParent();
return (parent == null) ? 0.0 : parent.getG() + dg.getCosts()[parent.i][hwgs.i];

A reader’s implementation could differ in details but in general the following rules have to
be followed. Firstly, the class should extend the sac.game.GraphStateImpl class which is a
suitable abstraction for states takinng part in graph searches. Secondly, the three vital elements
should be described: (1) generation of descendants — by overriding the generateChildren()
method, (2) identification of states — in our example this has been done by an override of the
hashCode () method (it comes from the java.lang.Object class), (3) termination — by overriding
the isSolution() method.

Additionally, a function object called StateFunction is attached to our class by means of the
setGFunction(...) static method. In fact, this fragment is not a must in general, but in our
example it is needed to take the costs of edges into account. Without this fragment all transitions
would be by default treated as being of cost 1 (one manipulation / move). The attached object is
equipped with a calculate(...) method. It is meant to return the cost paid by travelling from
the initial state up to the current state. The name setGFunction(...) is driven by a naming
convention known from graph search algorithms, in particular the A* algorithm. Commonly, the
travelled cost from the initial state up to a state s is denoted by ¢(s), and the estimated cost from s
to the goal state by h(s). The understanding of these details is not important right now and will be
discussed later in section

Now, by executing the following main(...) method

HelloWorldGraphState.dg = myGraph; // static reference to graph from previous listing

GraphSearchAlgorithm algorithm = new Dijkstra(new HelloWorldGraphState(0));
algorithm.execute();
HelloWorldGraphState solution = (HelloWorldGraphState) algorithm.getSolutions().get(0);

System.out.println("SOLUTION:." + solution);
System.out.println("PATH:." + solution.getPath());
System.out.println ("PATH_.COST:." + solution.getG(Q));

one can see the search results related to the Dijkstra’s algorithm:

SOLUTION: 7
PATH: [0, 2

» 1,3, 7]
PATH COST: 5.0

The reader can check that the path shown is in fact the path of lowest cost (the shortest path).
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The search graph generated by SaC during our exemplary execution is presented in Fig.|1.2|(the
visualization was produced by Graphviz from an input file generated from SaC’s API). Throughout
this user guide, the coloring of our illustrations for graph searches is as follows: yellow denotes

depth = 0.0
g=20.0
h=20.0
f=20.0
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Figure 1.2: Search graph produced by SaC using Dijkstra’s algorithm for the “hello world” exem-
plary graph from Fig.
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the initial state, red denotes states that were generated but not visited, green denotes visited states
lying on the path to the solution, light gray denotes visited states not on the path, blue indicates
the goal (solution) state. In every box, displayed is an information about: the depth of a state, its
traveled cost g, estimation of its remaining cost / (0 by defeault when no heuristics is defined), and
its representation in the inner white rectangle.

The reader might have noticed the lack of the 0 — 1 link in the search graph from Fig.
although such a transition is possible according to our directed graph under search (Fig.[1.1). The
explanation is as follows — as the search procedure was progressing it did at first generate the
state 1 as one of descandants of state 0, but later it discovered that it is cheaper to reach the state
1 going via 2 (path 0 — 2 — 1), therefore finally, the state 2 was memorized as the ‘best parent’
for state 1. Probably, this is a good place to point out the distinction between a graph subject to
searching and a search graph. The first pertains to the structure, possibly with cycles and possibly
infinite, describing some real-world object or phenomenon that we analyze by searching. The
latter describes the way the actual search procedure was progressingﬂ Our illustrations of search
graphs in this user guide can be regarded as images or snaphots of the search procedure at its
stoppage moment.

How would a breadth-first search procedure do on our example (instead of Dijkstra’s algo-
rithm)? The necessary modification is in the line instantiating the algorithm (line 2):

GraphSearchAlgorithm algorithm = new BreadthFirstSearch(new HelloWorldGraphState(0));

with the rest of the code unchanged. It results in the following output:

SOLUTION: 7
PATH: [0, 1, 3, 7]
PATH COST: 6.0

and the search graph illustrated in Fig. One can recognize that the breadth-first search
procedure neglects the transition costs and is guided only by depths of states (i.e. the number of
hops from the initial state). The resulting path is therefore of greater cost than before.

As the reader might have noted our exemplary HelloWorldGraphState class kept a static
reference to the directed graph object. The reference was static because it was common to all
HelloWorldGraphState objects and could be shared. This reference was needed for the purpose of
generation of descendants — we accessed it in the generateChildren() method to know what are
the edges outgoing from the current node (encapsulated by the search state). We should explain
that such a feature — memorization of the whole graph under search — will not be always present
when using SaC. Very often the programmer will be able to construct the descendants solely on
the basis of the information present in the current state (e.g. possible manipulations for the current
arrangment of a sliding puzzle or Rubik’s cube, etc.). The reader should understand that graphs
under search can be very large, often too large to be memorized or even infinite.

1Since the procedure suitably avoids the cycles a search graph is also often referred to as a search tree.
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Figure 1.3: Search graph produced by SaC using Breadth-first search algorithm for the “hello
world” exemplary graph from Fig. [1.T]

Q

Let us now play with a larger scale example, depicted in Fig. We generate a graph with 100
nodes placed on a plane within a square of side 100. The initial node is placed in the top-left corner,
the goal node in the bottom-right corner. The rest of nodes is placed randomly according to the
uniform distribution within the square. Edges between nodes are also generated on random but
satisfy the following constraints. The number of edges is approximately 10% of the total number of
edges in a completely connected graph. Two nodes can be connected only if the distance between
them along a straight line is not greater than 20% of the square diagonal. In other words we allow
only fairly close nodes to be connected — the graph can be regarded as a simulation of a map.
The cost of an edge is equal to the aforementioned distance plus some random € > 0 (uniformly
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distributed) proportional to that distance but not greater than 10% of it. Fig.[1.4{shows the graph
together with the shortest path. The reader may zoom in the figure to see more details.

Q

€]

®

Figure 1.4: Graph with 100 nodes generated on random: initial node 0 (yellow), goal node 99
(blue). Shortest path marked as bolder black.
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To store our graph we have introduced a new class DirectedGraphWith2DCoordinates, shown
below, as an extension of DirectedGraph. Again, we remark this class is not related to SaC itself.

public class DirectedGraphWith2DCoordinates extends DirectedGraph {
private double[][] coordinates;

public DirectedGraphWith2DCoordinates(int howManyNodes, int goal) {
super (howManyNodes, goal);
coordinates = new double[howManyNodes][2];

}

public void addCoordinates(int i, double x, double y) {
coordinates[i][0] X;
coordinates[i][1] y;

}

public double[][] getCoordinates() {
return coordinates;

}

The code to generate the actual instance of our graph (from Fig. is listed below. In the code
weusea java.util.Randomobject as the random generator and we force the seed of randomization
(1234). This allows to generate exactly the same graph on every run of the program.

int n = 100;
DirectedGraphWith2DCoordinates myGraph = new DirectedGraphWith2DCoordinates(n, n - 1);

double side = 100.0;
myGraph.addCoordinates(®, 0.0, side); //initial
myGraph.addCoordinates(n - 1, side, 0.0); //goal

Random random = new Random(1234); // java.util.Random, imposed randomization seed: 1234
for (int i = 1; 1 < n - 1; i++)
myGraph.addCoordinates (i, side

random.nextDouble (), side random.nextDouble());

int e = (int) Math.round(®.1 * n * (n - 1)); // 10 % of a complete graph

double maxDistance = 0.2 * side * Math.sqrt(2.0); // max distance between two nodes to be
connected
for (int k = 0; k < e; k++) {
int i, j;
double distance;
do {
i = random.nextInt(n);
j = random.nextInt(n);

distance = Math.sqrt(
Math.pow(myGraph.coordinates[i][0] - myGraph.coordinates[j][0], 2)
+ Math.pow(myGraph.coordinates[i][1] - myGraph.coordinates[j][1], 2)
)5

} while ((i == j) || (myGraph.getCosts()[i]J[j] < Double.POSITIVE_INFINITY) || (distance >
maxDistance));

double epsilon = random.nextDouble() * 0.1 * distance;
myGraph.addEdge (i, j, distance + epsilon);




O 0NN UTH W~

=
N = O

CHAPTER 1. GETTING STARTED 17

To search our graph with Dijkstra’s algorithm we prepare the following program and we
display a bit more information to the console than before. Note that we again use the same state
class — HelloWorldGraphState.

HelloWorldGraphState.dg = myGraph; // our random graph (map) with 100 nodes

GraphSearchAlgorithm algorithm = new Dijkstra(new HelloWorldGraphState(0));
algorithm.execute();
HelloWorldGraphState solution = (HelloWorldGraphState) algorithm.getSolutions().get(0);

System.out.println("SOLUTION:." + solution);
System.out.println("PATH:." + solution.getPath());
System.out.println ("PATH_.COST:." + solution.getG(Q));
System.out.println("DURATION.[ms]:." + algorithm.getDurationTime());
System.out.println("CLOSED:." + algorithm.getClosedStatesCount());
System.out.println("OPEN:." + algorithm.getOpenSet().size());

We execute the program and obtain the following output in the console:

SOLUTION: 99

PATH: [0, 18, 14, 64, 60, 10, 5, 99]
PATH COST: 149.51694106202785
DURATION [ms]: 11

CLOSED: 100

OPEN: 0

Without going too much into details, let us explain that algorithm.getClosedStatesCount()
returns the number of states visited during the search, whereas algorithm.getOpenSet() .size()
returns the number of states that were generated but not visited because the algorithm was stopped
when reaching a solution.

Perhaps some readers may know that Dijkstra’s algorithm belongs to so called uninformed
search methods. The algorithm takes into account only the travelled (experienced) cost g(s) while
traversing a graph and does not use any apriori information or heuristics to guide the ongoing
search more economically to the goal. Another famous algorithm called A* performs an informed
search. It uses the sum g(s) + h(s) to decide about the order in which states are visited. We remind
that the heuristic summand #(s) is an estimate on the cost remaining to the goal (in fact a lower
bound on exact remaining cost). Let us try out A* on our last example.

The necessary modification (line 2):

GraphSearchAlgorithm algorithm = new AStar(new HelloWorldGraphState(0));

leads to the following output

SOLUTION: 99

PATH: [0, 18, 14, 64, 60, 10, 5, 99]
PATH COST: 149.51694106202785
DURATION [ms]: 10

CLOSED: 100

OPEN: 0
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We note that beside a tiny change in duration time nothing else changed. The number of visited
states is still the same — 100. Our algorithm worked exactly as Dijktra’s algorithm. What is
wrong? The heuristic function (the additional information) has not been defined. We need to go
back to our HelloWorldGraphState class and add the following fragment to the static block:

public class HelloWorldGraphState extends GraphStateImpl {

static {

setHFunction(new StateFunction() {

@Override
public double calculate(State state) {
HelloWorldGraphState hwgs = (HelloWorldGraphState) state;
DirectedGraphWith2DCoordinates dg2D = (DirectedGraphWith2DCoordinates)
HelloWorldGraphState.dg;
return Math.sqrt(
Math.pow(dg2D.getCoordinates () [hwgs.i][0] - dg2D.getCoordinates () [dg2D.
getGoal O]1[0]1, 2)
+ Math.pow(dg2D.getCoordinates () [hwgs.i]J[1] - dg2D.getCoordinates () [dg2D.
getGoal (O]1[1]1, 2)
)5

I3
}

By doing so we define the heuristics which estimates the cost remaining to the goal as the distance
along a straight line (Euclidean distance). We are able to calculate such distance because we know
the coordinates of the goal. Clearly, some obstacles might occur along the way, but still this guiding
information is better than none. Below we show the new output for A* (after the heuristic function
has been attached to the class):

SOLUTION: 99

PATH: [0, 18, 14, 64, 60, 10, 5, 99]

PATH COST: 149.51694106202785

DURATION [ms]: 3

CLOSED: 18
OPEN: 38

As one can note the algorithm finds the same optimal path but the number of visited (closed) states
is now significantly smaller. Search graphs produced by both algorithms are shown in Fig.
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(a) search graph using Dijkstra’s algorithm:

Figure 1.5: Search graphs produced by Dijkstra’s (a) and A* (b) algorithms for the random graph
with 100 nodes from Fig.[1.4]
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1.3 “Hello world” for a game

Imagine the following simple game. There are n stones on a table. Players make their moves
interchangeably by taking away either one or two stones. A player is not allowed to take two
stones when exactly two are left. The player left with the last stone loses.

Figure 1.6: Exemplary game — “take one or two stones away”. Player left with the last stone loses.

Some readers probably know that this kind of game can be easily solved via dynamic program-
ming. When n = 1 the value of the game for the current player is a loss (L). Therfore, for n = 2 and
n = 3 the game value is a win (W), since the player to move can tranfer both these cases ton = 1
by taking one or two stones respectively. For n = 4 the game value is a loss again, and the pattern
LWWLWWLWW ... emerges. Therefore, it is easy to tell the game value and the correct move for
any n. If n can be expressed as n = 3m or n = 3m — 1 (for some natural m), then it is a win for the
player to move and he must simply transfer the game into n = 3m — 2.

Suppose however, that we do not know the dynamic programming approach, and we would
like to find the solution of our game for some 1 using SaC. Here is how.
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public class HelloWorldGameState extends GameStateImpl {
private int n;

public HelloWorldGameState(int n) {
this.n = n;

}

@Override
public List<GameState> generateChildren() {
List<GameState> children = new LinkedList<GameState>();
for (int i = 1; 1 <= 2 && i < n; i++) {
HelloWorldGameState child = new HelloWorldGameState(n - 1i);
child.setMoveName (Integer.toString(i));
child.setMaximizingTurnNow (!isMaximizingTurnNow ());
children.add(child);

}
return children;
}
@Override
public int hashCode() {
int[] pair = {n, (isMaximizingTurnNow() ? 1 : -1)};
return Arrays.hashCode(pair);
}
static {
setHFunction(new StateFunction() {
@Override
public double calculate(State state) {
HelloWorldGameState hwgs = (HelloWorldGameState) state;
if (hwgs.n == 1)
return (hwgs.isMaximizingTurnNow()) ? Double.NEGATIVE_INFINITY : Double.
POSITIVE_INFINITY;
return 0.0;
}
s
}

Firstly, our class should extend the sac.game.GameStateImpl class which is a suitable abstraction
for states taking part in game tree searches. Secondly, the three vital elements should be described:
(1) generation of descendants —by overriding the generateChildren () method, (2) identification
of states — in our example this has been done by an override of the hashCode () method, which
comes from the java.lang.Object class, and we produce the hashcode from a pair of information
(number of stones 1, whose turn it is) uniquely describing our states, (3) termination (or heuristics)
— this has been done by attaching via the setHFunction(...) static method a suitable function
object to our class. This function is equipped with a calculate(...) method, and in our example
it returns either +co when the last stone is reached or 0 (no evaluation) otherwise.
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Now, by executing the following main(...) method

GameSearchAlgorithm algorithm = new MinMax(new HelloWorldGameState(6));
algorithm.execute();
System.out.println("MOVES.SCORES:." + algorithm.getMovesScores());

one obtains the answer for n = 6, being:

MOVES SCORES: {2=1.498077612385263E308, 1=-1.3482698511467367E308}

The large positive value ~ 1.498 - 10°® is the SaC’s way to indicate a win for the maximizing
(initial) player if he starts by taking two stones. The large negative value ~ —1.348 - 10°*® indicates
a loss for the player if he starts by taking one stone.

We should shortly explain that in game searches, in order to represent wins or losses SaC returns
numbers of order 10°® (close to the Double.MAX_VALUE value) rather than symbolic infinities —
Double.NEGATIVE_INFINITY or Double.POSITIVE_INFINITY (as the code from the example might
suggest). The returned numbers show how quickly a win or a loss is attained after a particular
move. A larger absolute value indicates a win or a loss after fewer moves. This can be regarded as
‘grading of infinities’, which SaC calculates on the fly, and is explained in more detail in chapter@]
— “Searching game trees” (in the API section

The search tree generated by SaC during the example from above is presented in Fig.[1.7] (the
visualization was produced by Graphviz from an input file generated from SaC’s API). Throughout
this user guide, the coloring of our illustrations for game searches is as follows: yellow denotes the
initial state, light gray denotes visited regular states, dark gray indicates non-win terminal states,
blue indicates win terminal states (a win for either player), dark red indicates states for which the
game value or a bound on that value was read as a ready result (because these states had occurred
before) from the so called transposition tabl , light red indicates the so called cutoff states which
could not affect the game value, green indicates states residing along the principal Variatiorﬁ In
every box, displayed is an information about: depth of a state, its heuristic value £, its game value
v (also known as the minimax value) assigned by the search procedure, and its representation.

The reader might be tempted now to check if the search would also work correctly for some
larger n, e.g. n = 100. The answer unfortunately is no. At least not without some intervention by
the user. The reason is that for games, SaC, like all search engines, has some depth limit (search
horizon), by default set to 3.5i.e. seven half—move Therefore, win states located beyond the search
horizon are not seen by the algorithm. Be reminded that in our exemplary implementation we
return zero for non-win states (line no. 34 of the HelloWorldGameState class). Actually, with depth
limit set to seven half-moves, already for n = 9 there will exist one win state beyond the search
horizon. To demonstrate more of such states, in Fig.[I.8|we depict the game tree produced by SaC
for n = 12. In the bottom left corner one can see several states, marked with dark gray, that are

2To be precise, SaC actually may return Double .NEGATIVE_INFINITY or Double.POSITIVE_INFINITY. This happens
only in the case when a win or a loss is predicted to come immediately — that is in one half-move.

3The notion and mechanisms of the transposition table will explained later in section

4Principal variation is a line of play during which both players make optimal moves with respect to the current
search horizon.

°In the game related nomenclature, a single move made by one player is called a half-move or a ply, and is counted
as 1/2. A full move is considered to be done after both players have made their half-moves.
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depth = 0.0
h=20.0
v = 1.498E308

n =6, max
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Figure 1.7: “Hello world” example for n = 6 — game tree searched by SaC.

terminals due to depth limit reached, and were assigned a zero by our implementation as their

heuristic game evaluation. We mention that the program response in that case would be
MOVES SCORES: {2=1.1556598724114885E308, 1=0.0}

23
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and the score 0.0 is a consequence of a too shallow search subtree.
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Figure 1.8: “Hello world” example for n = 12 — game tree searched by SaC. Terminal non-win
states (dark gray) visible in the bottom left corner due to a default depth limit set to 3.5.

To solve the case of n = 100, a more “aware’ user can encourage SaC to search deeper. A sample
code to do so is as follows.

public static void main(String[] args) {
GameSearchConfigurator configurator = new GameSearchConfigurator();
configurator.setDepthLimit (49.5);
GameSearchAlgorithm algorithm = new MinMax(new HelloWorldGameState(6), configurator);
algorithm.execute();
System.out.println("MOVES.SCORES:." + algorithm.getMovesScores());
System.out.println("VISITED:." + algorithm.getClosedStatesCount());
System.out.println("DURATION.[ms]:." + algorithm.getDurationTime());
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And, the information displayed to the console is

MOVES SCORES: {2=-9.260843422017989E307, 1=-9.260843422017989E307}
VISITED: 2550
DURATION TIME [ms]: 70

showing the correct response that the initial player loses regardless of his moves after the optimal
play by his opponent. Fig.[1.9]illustrates the tree associated to that search in a simpler format (we
encourage the reader to zoom in the figure multiple times to see the coloring of states better).

Figure 1.9: “Hello world” example for n = 100 — game tree searched by SaC with the depth limit
explicitly set to 49.5 (99 half-moves).



O OO UT W~

Chapter 2

State abstraction

In this section we present some of the API related to the state as a top-level abstraction for both
graph states and game states.

In SaC, introduced is an interface sac.State and its default implementation sac.StateImpl.
To give the reader an overview we start by showing the source Cod of the interface, then we
make some comments on particular elements. Since most of methods in the sac.StateImpl
implementation are straightforward, hereby we show only the more important excerpts of it. For
full code the reader is addressed to Appendix

package sac;

import java.util.List;
import sac.graphviz.Graphvizable;

public interface State extends Comparable<State>, Graphvizable {

public Identifier getIdentifier();

public void refreshIdentifier();

public State getParent();

public void setParent(State parent);

public List<? extends State> getChildren();
public double getDepth();

public void setDepth(double depth);

public List<? extends State> getPath();
public List<String> getMovesAlongPath();
public List<? extends State> generateChildren();
public double getH();

public void setH(Double h);

public void refreshH(Q);

public String getMoveName();

public void setMoveName (String moveName);
public void refresh();

1The listing is in its full, but without javadocs. The javadocs can be found within the library both in the actual source
files and in the generated HTML format.

26
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2.1 Identifiers

The first element of interest is the identifier (sac.Identifier). Identifiers are meant to be repre-
sentations of states within search procedures. If possible, they should be unique representations,
but more importantly they should be fast representations (i.e. quickly computable). In SaC, two
scenarios are allowed: (1) indentifiers are integers calculated via the int hashCode() method —
the default scenario, (2) indentifiers are strings calculated via the toString () method.

As thereader may know, bothhashCode () and toString () are standard Java methods included
in the most elementary class java.lang.Object and are meant to be overriden by the user if needed.
In other words, in SaC we let the user decide which scenario he prefers and we expect him to
implement at least one of the above two methods. The sac.Identifier type should be viewed as
a wrapper for this mechanism, regardless of the chosen scenario.

We remark, that typically in practice we decide for string identifiers when we absolutely
need to guarantee the uniqueness of identifiers in given problem. Yet, one should be aware that
comparisons of long strings may be computationally expensive. On the other hand, we decide for
integer identifiers (hashcodes) when we care more about the speed of execution, and simultenously
we agree to accept a tiny risk of a situation when conflicting hashcodes might occur, i.e. the same
hashcodes for two different states.

The source code of the sac.Identifier is as follows.

package sac;
public final class Identifier implements Comparable<Identifier> {

private static IdentifierType type = IdentifierType.HASH_CODE;
private Object id = null;

public Identifier(State state) {
id = (type == IdentifierType.HASH_CODE) ? Integer.valueOf(state.hashCode()) : state.
toString(Q);
}

public static final IdentifierType getType() {
return type;
}

public static final void setType(IdentifierType type) {
Identifier.type = type;

}
public int compareTo(Identifier otherIdentifier) {
if (type == IdentifierType.HASH_CODE)
return ((Integer) id).compareTo((Integer) otherIdentifier.id);
else

return ((String) id).compareTo((String) otherIdentifier.id);
}

public boolean equals(Object otherIdentifier) {
Identifier otherIdentifier2 = (Identifier) otherIdentifier;
if (type == IdentifierType.HASH_CODE)
return ((Integer) id).equals((Integer) otherIdentifier2.id);
else
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return ((String) id).equals((String) otherIdentifier2.id);
}

public String toString() {
return id.toString();

}

public int hashCode() {
int result = (type == IdentifierType.HASH_CODE) ? ((Integer) id).intValue() : ((String)
id) .hashCode () ;
return result;

}

As one may note the sac.Identifier class is basically a wrapper around its inner field: private
Object id. Itis interpreted either as an integer or a string depending on a global static setting
(private static IdentifierType type). On the usage level, this setting can be changed either
directly from the code via the static setType(...) method, or by means of so called configurators,
which are discussed in further sections.

2.2 Parent - children bindings

The sac.Stateinterface contains a getter getParent () and asetter setParent(...) torespectively
retrieve or impose a reference to the parent state for a given state. These two methods are meant
mainly for the purposes of the core of SaC, and in practice are called seldom by an end user. In
fact, we discourage the user to call the setter on his own because a careless usage might potentially
result in an incorrect behaviour of a search procedure. As a convention, we use the null result of
a getter when a state is the root state.

As regards descendant states (children) there is only a getter present — getChildren(). Itis
meant to return a list of references to children. We should remark however that by default SaC
does not memorize these references for memory saving reasons. Hence, by default an empty list is
returned. We explain that a link from a child to its parent (accessible via getParent()) is always
memorized, but the opposite direction links from a parent to its children are redundant. In practice,
children objects during a search procedure are created by the SaC itself via the generateChildren()
callback method executed on a parent. The children are suitably Visite later on. Again, this
default SaC behaviour (related to not-memorizing references from parents to children) can be
explicitly changed by a configurator object, but in practice such a change is needed only in the case
when the user is interested in drawing graphs by means of Graphviz, and is not needed for the
search itself.

A vital element is the mentioned generateChildren() callback method. This method must
inevitably be implemented by the user and should return a list of direct descendants (children) for
given state. In such an implementation the user is expected to:

- create a local list,

2In graph searches, children states (non-visited so far) are placed in a queue at this stage and polled from it later.
In game searches, a recursive call on a child state is made by the core of SaC. In either case, to correctly carry out the
search procedure there is no need to memorize references from a parent to all its children.
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- build the children according to the rules / nature of the specific problem,

- give names to the moves (or manipulations) which lead to the creation of particular children
(via setMoveName(...)),

- add the children to the local list,
- return the list.

Such proceedings have been already demonstrated in the “hello world” examples.

On the other hand, the user is not expected to attach anyhow his local list to the parent object
(and in fact should not do it, having in mind the remarks from the previous paragraph). The core
of SaC awaits just for the result of the generateChildren() callback method and proceeds with
the result approprietely further on.

2.3 Depth of state, path from root to given state

The sac.State interface allows the user to ask for the depth of a state by the getDepth() getter.
Depth is understood as the number of moves performed to transfer the root state into the given
state. In particular, the depth of the root state is zero. Although the API makes also the setter
available — setDepth(...) — the user is discouraged to use it explicitlyﬁ

Additionally, the user is allowed to ask for the path (sequence of states or moves) from the root
state up to the given state. Depending on the need, this can be done either by the getPath () method
(returns the sequence of states) or by the getMovesAlongPath() method (returns the sequence of
move names). We should remark that the path as a sequence of states includes the root state in the
front and therefore is longer by one element comparing to the sequence of move names.

2.4 Heuristics

The interpretation of a heuristic value assigned to a state is different for graphs and different for
game trees. When searching graphs, the heuristics is a non-negative estimation of the distance
remaining to the solutio When searching game trees, the heuristics is an evaluation of the game
position represented by a given stat In that case positive values indicate some advantage for
the maximizing player and negative values indicate some advantage for the minimizing player.
By default, the player who starts the game is regarded as the maximizing player in SaC.

®For analogical reasons as in the case of setParent(...).

4In fact it should be either an exact value or a lower bound on that distance, otherwise the heuristic is inadmissible
and might lead to non-optimal paths to the solution.

5Such an evaluation is often impresice and reflects human experience and knowledge about the game. For example
in chess, the heuristics may involve materialistic elements (number and quality of pieces remaining on the board), but
also positional elements like: advantage in the board center, structure of pawns, activeness of pieces, pass pawns, king
safety, etc.
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The API provides both the getter getH() and the setter setH(...) for the heuristics. Again
(as in former contexts), we discourage the user to use the setter explicitly, it is meant only for the
purposes of the core of SaC.

To define how the heuristics should be calculated for given search problem, the user is supposed
to provide an implementation of the sac.StateFunction class. Its default form in SaC is presented
below and it returns zero via the calculate(...) method regardless of the state passed as an
argument. The user should therefore appropriately populate the body of this method.

package sac;
public class StateFunction {

public StateFunction() {
}

public double calculate(State state) {
return 0.0;

}

}

In particular, in the context of game trees we encourage the user to return Double . POSITIVE_INFINITY
and Double .NEGATIVE_INFINITY constants as a representation of a win respectively for the maxi-
mizing and the minimizing playeﬂ

When the user-defined function is ready, it should be instantiated as an object — the calculator of
heuristics —and attached to the state class by means of the static method setHFunction(StateFunction
hFunction) (it comes from the sac.StateImpl class). Note that setHFunction(...) is static,
therefore the imposed function object will also be static — common to all the states.

There are two programmistic ways the user may create and attach his function object. The
first way is to create a separate named class (thus a separate source file) being an extension of the
sac.StateFunction, e.g. in the following manner

public class MyHeuristics extends StateFunction {

public double calculate(State state) {
//suitable calculations

}

}

and then to attach an instance of this class by placing the following static block in the state class.

public class MyState extends GraphStateImpl { // or extends GameStateImpl
static {
setHFunction(new MyHeuristics());

%A side remark: in the context of graph searching, the Double.POSITIVE_INFINITY constant might theoretically be
also of some use, e.g. for generated states that do not satisfy certain constraints for given problem. Such states with
infinite heuristics would be then placed at the very end of the queue. However, one may argue about the sense of
keeping them in the queue at all. Usually, it is better to simply discard (ignore) such states i.e. not to return them among
results of the generateChildren() method.
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}

The second way is to do it a bit simpler, namely by the Java mechanism of an anonymous class (so
without a separate source file), as shown below.

public class MyState extends GraphStateImpl { // or extends GameStateImpl
static {
setHFunction(new StateFunction() {
@Override
public double calculate(State state) {
//suitable calculations

}
I3

2.5 Refresh methods

In the listing of the sac.State interface from the beginning of this chapter one can notice three re-
fresh methods: refreshIdentifier(), refreshH(), refresh(). When and why are they needed?

Firstly, we need to explain that both the identifier and the value of heuristics are designed in SaC
in such a manner so that they are computed possibly only once. By that, SaC tries avoid multiple
and often expensive computations of the same resultsﬂ The typical scenario is the following. The
computation of either the identifier or the heuristics is postponed until the first call to the suitable
getter is made, i.e. getIdentifier() or getH() respectively. More precisely, after a state object
is constructed (instantiated) its internal variables meant to keep the identifier and the heuristics
remain set to null for some time. When the first call to a particular getter is made, the suitable
value is computed according to the recipe provided by the programmer and is stored internally
(in the place of the null). After that, for each successive call those memorized values are served
immediately, not recomputed.

As already said, the scenario described above is typical and covers the most common use
cases in SaC. However, there exist certain situations when explicit refreshes (forcing of recom-
putation) of identifier or heuristic value are necessary. Such situations usually occur e.g. when
the same (working) reference in RAM memory pointing to some state is used multiple times to
initiate the search procedure, but the content of this reference gets changed from one search to
another. A good example of that can be a chess playing program. Within its main loop, meant
to handle the ongoing game and to display it to the screen, the program may use the same work-
ing reference to a state object representing the current position on the board. After a move by

7 As an example one may think of the Traveling Salesman Problem, described in the section in which the heuristics
can be based on the concept of Minimum Spanning Tree (MST). To generate a MST one needs to perform an additional
algorithm (e.g. Kruskal’s or Prim’s algorithm). Therefore, it would be a clear waste to do it multiple times unnecessarily
within a search procedure.
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the human player is made, the program applies the move to that state by some suitable method,
e.g.currentState.makeMove(“e2:e4”), and we would like to use the modified state as the starting
point for a SaC search procedure. Since the state may now contain old values of the identifier and
the heuristics (from before the move) the programmer ought to refresh such a state. Otherwise,
a search might work incorrectly. The aforementioned methods are therefore meant to explicitly
force the recomputation of: the identifier (refreshIdentifier()), the heuristics (refreshH()), or
both (refresh()).



Chapter 3

Searching graphs

This chapter is devoted to the part of SaC library responsible for searching graphs. We begin the
chapter with a section reminding several well known graph search algorithms. The reader familiar
with these algorithms can move over to subsequent sections. The second section discusses SaC’s
API related to graph searching. The last one presents four graph-related examples in which we
have applied SaC for demonstration, namely: sliding puzzle, Traveling Salaseman Problem, and
sudoku.

3.1 Algorithms

Most of graph search algorithms can be conveniently formulated with the use of two sets (collec-
tions) of states — named by convention as the Open set and the Closed set. At a given stage of a
running algorithm, the Closed set contains states that have already been visited (and turned out not
to be a solution), whereas the Open set contains states waiting to be potentially visited. Awaiting
states have been generated as descendants (graph neighbours) from the previously visited ones.

Depending on the type and purpose of the search algorithm, Open and Closed sets are imple-
mented via different data structures, affecting their behaviour and performance. In particular, one
can note that decisive about the algorithm type is the order according to which generated states
are taken (and removed) from the Open set for further processing.

3.1.1 Breadth-first search, Depth-first search

It is difficult to point out original authors of breadth or depth-first searching techniques. In
fact, they are commonly treated as simple non-informative techniques to traverse a graph, rather
than actual search methods which should be informative (guided by some useful information).
Historically, it is likely that the very first version of a Depth-first search (DFS) was investigated
in the 19th century by a French mathematician Charles Pierre Trémaux as a strategy for solving
mazes.

As the naming suggests, in the breadth-first approach the algorithm must first vist all states
with depth d before it can proceed with states at depth d + 1. In a sense contrarily, in the depth-first

33
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approach the algorithm must not visit any unvisited state at depth d if there exist some generated
and unvisited states with depth d + 1. We present both these algorithms in the subsequent
pseudocodes. In fact, the majority of the code remains the same, the only difference is in the order
in which successive states are removed (polled) from the Open queue (line no. 6).

Alg. 1 Breadth-first search

1: procedure BREADTHFIRSTSEARCH(S)) > initial state s
2: Closed := 0 > empty set of visited states
3: set reference from sy to its parent to null
4: Open = {sp} > queue of states to be visited
5. while Open # 0 do
6: remove from Open the state s with the smallest depth > ‘poll” operation
7: if s is the goal state then return s > solution found
8: generate descandants {t} of s
9: forall t do

10: if t ¢ Closed and t ¢ Open then add t to Open

11: add s to Closed

12: return null > no solution found

Alg. 2 Depth-first search

1: procedure DEPTHFIRSTSEARCH(S)) > initial state s
2: Closed := 0 > empty set of visited states
3: set reference from s to its parent to null
4 Open = {sp} > queue of states to be visited
5 while Open # 0 do
6: remove from Open the state s with the largest depth > ‘poll” operation
7 if s is the goal state then return s > solution found
8 generate descandants {t} of s
9: for all t do

10: if t ¢ Closed and t ¢ Open then add t to Open

11: add s to Closed

12: return null > no solution found

In the pseudocodes we implicitly assume that all states are aware of their depths (on the
programmistic level, each state object is equipped with an integer depth field). Once a descendant
t is generated from s, the depth of t becomes equal to the depth of s plus one.

Due to the wanted order, the Open set can in practice be implemented as a simple FIFO (First
In First Out) collection (an ordinary queue) for the breadth-first case, and as a LIFO (Last In First
Out) collection (a stack) for the depth-first case. Yet, for large graphs both FIFO and LIFO data
structures may become unefficient. We discuss more efficient data structures, better suited for
more advanced algorithms and larger graphs to be searched, in the successive sections.
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3.1.2 Dijkstra’s algorithm

The famous shortest path finding algorithm, known popularly as Dijkstra’s algorithm, was con-
ceived by Edsgar Dijkstra in 1956 and published in the work (Dijkstra, 1959). Originally, the
algorithm has been formulated so that it allows to find all shortest paths between an initial graph
node (state) and all the remaining nodes (a.k.a. single source all shortest paths). This explains why
the algorithm does not use any heuristics that would reduce the search time by estimating the
remaining distance to the goal, since there exist no single goal.

On the other hand, the algorithm can easily be modified so that it stops sooner (before shortest
paths to all nodes are establised) — at the moment it reaches a particular node (state) distinguished
as the goal. We use this idea in our presentation of the algorithm. In fact, the reader shall see later
that Dijkstra’s algorithm, formulated as the shortest path finder for a single goal, can be viewed as
a special case of the A* algorithm, described latelﬂ

Let g(s) denote the exact cost (or distance) for traveling from the initial state to the state s. Let
A(s — t) denote the cost of transition from s to t, where t is a direct descendant (neighbour) of s.
Then, the Dijkstra’s algorithm can be formulated as follows.

Alg. 3 Dijkstra’s algorithm

1: procedure DijksTRA(Sp) > initial state s
2: Closed := 0 > empty set of visited states
3: g(s0) :==0 > distance covered from start
4: set reference from sy to its parent to null
5: Open := {sp} > queue of states to be visited
6: while Open # 0 do
7: remove from Open the state s with the smallest g(s) > ‘poll” operation
8: if s is the goal state then return s > solution found
9: generate descandants {t} of s

10: for all t do

11: if t € Closed then continue >t already visited

12: g(t):=g()+A(s — 1)

13: set reference from ¢ to its parent to s

14: if t ¢ Open then

15: add t to Open

16: else

17: if new g(t) is smaller than value known so far then

18: replace t in Open with the new one

19: update position of t in Open

20: add s to Closed

21: return null > no solution found

U1f the heuristic summand of the ordering function used in the A* algorithm is forced to be always zero, the A*
algorithm becomes the Dijkstra’s algorithm.
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It is worth to remark that by means of update steps — g(t) := g(s) + A(s — t) — the g cost can
be regarded as a cost observed along the way, which makes it exact.

In practice on the programmistic level, the Open set in Dijkstra’s algorithm is commonly
implemented as a priority queue. It is a data structure typically based on a binary hea which
helps to efficiently retrieve the successive states from the queue preserving the order induced by
the g function. Addition of an element (state) into the priority queue is of logarithmic complexity
— O(log, n), where n stands for the number of elements in the queue. Removal of the minimal
element from the head of the queue (poll operation) is also O(log, ) complex. The latter can be
explained by the fact that although the minimal element can be quickly peeked at in O(1) time,
as it is the first element in the heap, after this element is removed the heap must be rearrange
which requires logarithmic time. As regards the ‘replace’ or ‘contains’ operation performed on a
priority queue (needed in lines no. 14-19 in the algorithm), they are unfortunately of linear time
— O(n) — at least for typical priority queue implementations in existing programming languages.
In SaC, we offer some improvements with respect to these operations by applying auxiliary data
structures. This topic is discussed further in the API-related section [3.2]for graphs.

As regards implementations of the Closed set, one should mostly care about fast performance
of ‘contains” and ‘add’ operations. Therefore, typically Closed sets are implemented as hash maps
having constant or amortized-constant complexity — O(1). The hash maps are fast at the cost
of RAM memory consumption. This might become a problem when very large graphs are to be
searched. In SaC, we offer an alternative possibility to use a sorted tree as a Closed set, which allows
for some memory savings but implies logarithmic complexity — O(log, n).

3.1.3 Best-first search (BFS)

Pearl (1984) proposed a search approach in which the algorithm expands always the most promis-
ing (the ‘best’) state in the first order. The evaluation how promising a state s is, is performed by a
so called heuristic function /(s). This function can be constructed differently, and in general may
depend on: the information contained in s itself, the information collected along the path from
the initial state up to s, some general knowledge about the problem and the desired properties of
the solution state. By convention /(s) is defined as non-negative function and its smaller values
suggest closeness of s to the goal state. Informally, h(s) can be therefore treated as a distance
function.

In general, Best-first search algorithms and heuristics applied in them are designed to quickly
reach the goal state by any path. Therefore, they do not focus on optimizing the path anyhow. In

ZBinary heaps can be regarded as binary trees, commonly implemented using dynamically extensible arrays. An
element at index i in the array has its children under indices 2i + 1 and 2i + 2 (with indexing starting from zero).
Oppositely, the parent of an i-th element is under the index [(i — 1)/2]. There are two types of heaps: max-heaps and
min-heaps depending on the wanted order to be imposed. For Dijkstra’s algorithm a min-heap is used, satisfying the
following condition: g(s1) < g(s2) and g(s1) < g(s3), for all 51, 5, 53 where s,, 53 are children elements (in the heap’s array)
for the element s;.

3The rearrangement of the heap is carried out by placing temporarily the last element from the underlying array in
the place of the first element, and by moving this element downwards (swapping it with one of its children) as long as
the heap condition is not met. The number of swaps is at most equal to the height of the tree represented by the heap,
thus approximately O(log, 1).
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other words by using the best-first approach we do not care how long the path is, neither in terms
of the number of states (manipulations) along it, nor its cost. In fact, the notion of cost of the path
(e.g. as it was defined by the g function for Dijkstra’s algorithm) does not exist in the BFS.

Alg. 4 Best-first search

1: procedure BEsTFIRSTSEARCH(S)) > initial state sg
2: Closed := 0 > empty set of visited states
3: calculate h(sp) > heuristics according to provided recipe
4: set reference from sy to its parent to null
5: Open = {so} > queue of states to be visited
6:  while Open # 0 do
7: remove from Open the state s with the smallest h(s) > ‘poll” operation
8: if s is the goal state then return s > solution found
9: generate descandants {t} of s

10: forall t do

11: if t € Closed then continue >t already visited

12: calculate h(t)

13: set reference from t to its parent to s

14: if t ¢ Open then

15: add t to Open

16: else

17: if new h(t) is smaller than value known so far then

18: replace t in Open with the new one

19: update position of t in Open

20: add s to Closed

21: return null > no solution found

A comment should be made on the fragment of the algorithm (lines 16-19), where it discovers,
for a descendant state ¢, that another instance of that state already exists in the Open set, and then
checks if the newly calculated h(t) is smaller (better) than the value known so far. A question can
be posed: can the heuristic function return different values for two instances of the same state? In
the general case, the answer is ‘yes” — e.g. if the h function is not solely the function of a state,
but also depends on some information collected along the path. Nevertheless, most commonly in
practice the BFS applications use heuristic functions being constant for multiple instances of the
same state.

314 A

The A" algorithm was proposed by Haart, Nilsson and Raphael in (Hart, Nilsson and Raphael,
1968; Hart, Nilsson and Raphael, 1972). Informally, the algorithm can be regarded as a combination
of Dijkstra’s and BFS algorithms (or a more general variant of them). It is because the algorithm
uses both the exact cost function g and the heuristic cost function  to decide about the order in
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which states are visited.
More strictly, let the evaluation function (deciding about the retrieval order from the Open set)
for a state s be of form:

f(s) = g(s) + h(s), (3.1)

where g(s) is the exact cost or distance (observed along the way) for traveling from the initial state
to the state s, and h(s) is a heuristic estimation of the cost remaining to the goal state. Because the
summand h(s) is a heuristic function, the whole f(s) function can also be regarded as a heuristics.
Beneath, we present the pseudocode of the algorithm.

Alg. 5 A
1: procedure ASTAR(s)) > initial state sg
2: Closed := 0 > empty set of visited states
3: g(s0) :==0 > distance covered from start
4: calculate h(so) > heuristics according to provided recipe
5: f(s0) := g(s0) + h(so) > sum deciding about order of Open queue
6: set reference from sy to its parent to null
7: Open = {so} > queue of states to be visited
8:  while Open # 0 do
9: remove from Open the state s with the smallest f(s) > ‘poll” operation

10: if s is the goal state then return s > solution found

11: generate descandants {t} of s

12: for all t do

13: if t € Closed then continue >t already visited

14: gt) =g06)+A(s = t)

15: calculate h(t)

16: f(t) = g(t) + h(t)

17: set reference from ¢ to its parent to s

18: if t ¢ Open then

19: add t to Open

20: else

21: if new f(t) is smaller than value known so far then

22: replace t in Open with the new one

23: update position of ¢ in Open

24: add s to Closed

25: return null > no solution found

For the shortest (smallest cost) path finding applications, it is crucial that the h function is a
so called admissible heuristics. This means that & must not overestimate the unknown true cost
remaining to the goal state. In other words h should be a lower bound on the remaining cost.

If the heuristics is admissible and the A* algorithm finds a goal state than it is guaranteed that
this state is the optimal solution — has the shortest path. Proof: Imagine the A* algorithm stops
at a certain point (line no. 10) and returns a state s* with the cost value g(s*). Obviously, h(s*) = 0,
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since s* satisfied the stop condition. We know that the Open queue preserves the non-decreasing
order of removal with respect to f function for successive states. Therefore, it is known that all
states s € Open, remaining in the queue at the stop moment, satisfy the condition f(s) > f(s*). Two
cases should now be considered. (1) If some state s satisfies the stop condition, then h(s) = 0 but
g(s) > g(s), since f(s) > f(s*). In other words s is also the goal state but with the cost of its path
not cheaper than the cost of path for s*. (2) If some state s does not satisfy the stop condition, but
can potentially lead to the goal state later and we have that g(s) < g(s*), then the final path will for
sure be not cheaper than the path for s*, because the lower bound #(s) > 0 on the remaining true
cost indicates that g(s) + h(s) > g(s*), again because f(s) > f(s*). m

An auxiliary notion of monotnous heuristics is also useful in this context. A heuristics is said to
be monotnous if for all pairs s, t, where t is a descendant of s, the following condition is satisfied:

f(s) < f), (3.2)

which can also be rewritten as

g(s) + h(s) < g(t) + h(t),
h(s) < g(t) — g(s) + h(t),
h(s) < A(s = t) + h(b). (3.3)

The last inequality can be restated as follows: the heuristic value at s must not be greater than the
cost of transition from s to ¢ plus the heuristic value at . The inequality can become equality only
in cases when one travels towards the goal along a straight line (in the sense of metrics associated
with the given graph). Moreover, if a heuristics is monotonous then it is also admissible.
Historically, the algorithm was first named as A algorithm. In the notational sense, this was
related to the fact that if we consider two heuristics i and /*, where h* is marked with a star to
denote an optimal heuristics (returning exact costs remaining to the goal), then the algorithm using
h* can also be called optimal and denoted as A*. Moreover, the optimality of such an algorithm
is twofold. Firstly, it performs best (visits the fewest states) among all A algorithms. Secondly, it
performs not worse than all other graph search algorithms (not necessarily from the family of A
algorithms) which are worse or equally well informed in the sense of information stored in #".

3.1.5 IDA"

For some problems where the search graph is very large, the A* algorithm may run into RAM
memory consumption troubles. The number of states in both Open and Closed sets might potentially
exhaust the whole RAM.

Iterative Deepening A* (IDA”) proposed by Korf (1985) can be viewed as a variant of A* with low
memory consumption. The IDA* does not keep record of visited states, i.e. does not use the Closed
set. Also, it typically keeps in memory only the states residing on the path it currently pursues.
Depending on the algorithm formulation, it either uses only a small Open set (non recursive
formulation with a main while loop) or does not use the Open set at all (recursive formulation).
Obviously, the low memory usage is not for free — the IDA" is slower than A* because it visits
many states multiple times.
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The idea behind the IDA” can be sketched as follows. First, the algorithm uses the heuristic
value calculated for the initial state /i(sp) to establish the search horizon H = f(so) = 0+ h(so). Then,
the algorithm follows different search paths outgoing from the initial state in a depth-first manner.
If it reaches a goal state within the search horizon (i.e. if the observed cost g for the reached state
is less or equal to H) then it returns the goal and the associated path. Whenever the algorithm
reaches a state outside the search horizon, then the state is not pursued further (its descendants
are not generated), but the algorithm may use the observed cost for this state and its heuristics to
establish a new search horizon H’. More precisely the new search horizon is derived as:

, .
H {s:g}sl)r;m f(s). (3.4)
Finally, when all paths reaching outside the current horizon H are exhausted then the algorithm
deepens the search horizon by the substitution H := H’, and the whole process is repeated.

We now present the pseudocodes for two IDA” formulations —a recursive one and a non-recursive

(with a main while loop).

Alg. 6 Recursive IDA*

1: procedure RECURSIVEITERATIVEDEEPENINGASTAR(S)) > initial state sg
2: g(s0) :==0 > distance covered from start
3: calculate h(sp) > heuristics according to provided recipe
4: f(s0) := g(s0) + h(so) > sum deciding about order of Open queue
5: set reference from s to its parent to null

6: H := f(s0) > first search horizon

7: while true do

8: (s, H") :=SearcH(sg, H)

9: if s #null then return s > solution found
10: if H = co then return null > no solution found
11: H:=H
12: procedure SEArcH(s, H) > initial state sg
13: if f(s) > H then return (null, f (s))

14: if s is the goal state then return (s, g(s)) > solution found
15: H =00

16: generate descandants {t} of s

17: for all t do

18: g(t) :=g(s) +A(s —> 1)

19: ft) == g(t) + h(t)

20: (u, H”) :=SearcH(t, H)

21: if u #null then return (u, g(u)) > solution found
22: H' := min{H’, H"} > deepening the horizon

return (null, H")
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Alg. 7 IDA*
1: procedure ITERATIVEDEEPENINGASTAR(S)) > initial state s
2: g(s0) :==0 > distance covered from start
3: calculate h(sp) > heuristics according to provided recipe
4: f(s0) := g(s0) + h(so) > sum deciding about order of Open queue
5: set reference from s to its parent to null
6: Open = {sp} > queue of states to be visited
7: H := f(s0) > first search horizon
8: H' = > next search horizon
9:  while Open # 0 do

10: remove from Open the state s with the smallest f(s) > ‘poll” operation

11: if g(s) > H then

12: H’ := min{H’, f(s)}

13: if Open = ( then

14: H:=H’ > deepening the horizon

15: H’ := o0

16: Open := {sp}

17: continue

18: if s is the goal state then return s > solution found

19: generate descandants {t} of s

20: for all t do

21: gt) :=g(6) +A(s —> t)

22: calculate h(t)

23: f(t) == g(t) + h(t)

24: set reference from ¢ to its parent to s

25: if t ¢ Open then

26 add t to Open

27: else

28: if new f(t) is smaller than value known so far then

29: replace t in Open with the new one

30: update position of t in Open

31: return null > no solution found

3.2 APl

3.2.1 Graph state abstraction

In SaC’s API for searching graphs, the main ‘actor” is the sac.graph.GraphState interface being
an extension of the sac.State discussed earlier in Chapter 2| Below, we present the code listing
for the sac.graph.GraphState interface and then some excerpts from its default implementation
— sac.graph.GraphStateImpl. For full code of the implementation the reader is addressed to

Appendix
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package sac.graph;

import java.util.List;

import sac.State;

public interface GraphState extends State {

@Override

public GraphState getParent();

@Override

public List<GraphState> getChildren();
@Override

public List<GraphState> getPath();
@Override

public List<GraphState> generateChildren();

public double getG();
public double getF();
public boolean isSolution();
public void refreshCosts();

The first thing to note is that the GraphState interface reformulates the signatures of four basic
methods related to the parent — children binding and path tracking. The difference (of cosmetic
nature) is in the types returned, which now become GraphState or List<GraphState>, as the
resulting objects should be treated as graph states (rather then general states).

The new elements in the interface (with respect to its ancestor sac.State) are cost related
methods: getG(Q), getF(), refreshCosts(), and the isSolution() method. As regards the cost
related methods the relevant excerpts from their implementation are listed below.

public abstract class GraphStateImpl extends StateImpl implements GraphState {

protected Double g = 0.0;
protected Double f = null;
protected static StateFunction gFunction;

public static class GFunction extends StateFunction {

@Override
public double calculate(State state) {
return (state.getParent() == null) ? 0.0 : ((GraphState) state.getParent()).getG() +
1.0;
}

}

public final static void setGFunction(StateFunction gFunction) {
GraphStateImpl.gFunction = gFunction;

}

@Override
public final double getG() {
if (g == null)
g = Double.valueOf(gFunction.calculate(this));
return g;
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}

@Override
public final double getF() {
if (f == null)
f = Double.valueOf(getG() + getH(Q));
return f;

}

@Override
public final void refreshCosts() {
g Double.valueOf(gFunction.calculate(this));

h = Double.valueOf(hFunction.calculate(this));
f = Double.valueOf(getG() + getH(Q));

}

static {

gFunction = new GFunction();

3

As one may note, graph states are by default equipped with a function of observed cost (g
function) which treats each transition from a parent to its child as being of cost 1. This default
behavior is often valid for many graph problems where our objective is to minimize the number of
moves or manipulations leading from the initial state to the goal state (e.g. sliding puzzle, Rubik’s
cube, simple non-weighed graphs). This assumption makes the g function behave identically as
depth. If it is user’s wish to change this default behaviour for a given problem, he must provide
an implementation of a StateFunction and attach statically it to his class (being an extension of
the GraphState class) by the setGFunction(...) method.

It is worth to remark that the calculations of g and f functions are postponed until the very first
calls of respective getters — getG() and getF(). Itis the same design idea as was discussed earlier
in the context of identififers and heuristics ( function). And its purpose is to minimize the number
of actual calculations. The refreshCosts() method is meant to be called by search algorithms,
typically just after the moment where descendant states are generated and then processed one
after another. Explicit user calls to this method are in practice not needed (exceptions are the
presentation-related or online game playing situations discussed already in Section [2.5).

As regards the isSolution() method, the user should provide its implementation in com-
pliance with the nature of his search problem. When a state represents the goal state (satisfies
the desired terminal properties) then the isSolution() method should naturally return true
(otherwise — false).

3.2.2 General graph search algorithm

In this section we discuss SaC’s internal mechanisms related to the general graph searching
procedure. This procedureis represented by an abstract class: sac.graph.GraphSearchAlgorithm.
Obviously, the end user of SaC library does not have to be aware of core-level intricacies. Instead, in
practice he can limit himself to instantiating a specific search algorithm (e.g.: new Dijkstra(...)
or new AStar(...), etc.) and running it for his particular problem. Therefore, we recommend
the reading of subsequent contents only to readers really interested in low level details of SaC,
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perhaps the readers intending to extend the library in the future with new algorithms or data
structures.

The listing below demonstrates the most important parts of the GraphSearchAlgorithm class.
For clarity, some less interesting parts have been skipped. The class is designed to work as a general
and common (model) procedure for searching graphs. As the reader shall see later, the subclasses
representing specific search algorithms (e.g. BreadthFirstSearch, DepthFirstSearch, Dijsktra,
etc.) are, in the programmistic sense, very light extensions of the GraphSearchAlgorithm class. In
fact, those light extensions only redefine the order according to which states are removed from the

Open setﬁ

package sac.graph;

public abstract class GraphSearchAlgorithm extends SearchAlgorithm {
protected GraphState initial = null;

protected OpenSet openSet = null;
protected ClosedSet closedSet = null;

protected GraphSearchConfigurator configurator = null;

protected List<GraphState> solutions = null;
protected int step = 0;

protected GraphState current = null;
protected GraphState bestSoFar = null;

public GraphSearchAlgorithm(GraphState initial, GraphSearchConfigurator configurator) {

}

protected void setupOpenAndClosedSets (Comparator<GraphState> openSetComparator) {

3

protected void reset() {

}
// getters, setters

@Override
public void execute() {
// initialization of data structures and monitoring thread
doExecute(); // actual search start
// stoppage of monitoring threads
}

protected void doExecute() {
// the body of the main search procedure, presented later on

}

“Exception to this rule is the IterativeDeepeningAStar class, which additionally overrides the main search proce-
dure — execute().
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We now concentrate on the doExecute() method. It can be viewed as a counterpart of algo-
rithmic pseudocodes discussed earlier in Section[4.1] Here is the full listing of the method.

protected void doExecute() {
startTime = System.currentTimeMillis();
if (initial == null)
return;
openSet.add(initial);
step = 0;
while (!openSet.isEmpty()) {
step++;

// time limit check
if (configurator.getTimeLimit() < Long.MAX_VALUE) {
long currentTime = System.currentTimeMillis();

if (currentTime - startTime > configurator.getTimeLimit()) {
endTime = System.currentTimeMillis();
break;

}

}

// poll current best from queue
current = openSet.poll();

// putting current to closed set
if (configurator.isClosedSetOn())
closedSet.put(current);

// keeping best so far
if ((initial.getH() > 0) && ((bestSoFar == null) || (current.getH() < bestSoFar.getH())))
bestSoFar = current;

// solution check
boolean isSolution = current.isSolution();

// registering solution
if (isSolution) {
if (solutions.isEmpty())
bestSoFar = current;
solutions.add(current);
if (configurator.getWantedNumberOfSolutions() == solutions.size())
break;

}

// generating children
List<GraphState> children = current.generateChildren();

// iterating over children
for (GraphState child : children) {

// check if child was closed
boolean closedSetContains = (configurator.isClosedSetOn()) ? closedSet.contains(child
) : false;

if (!closedSetContains) { // child not in closed set
// set child -> parent link and depth

child.setParent (current);
child.setDepth(current.getDepth() + 1);
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// update scores g, h, f
child.refreshCosts();

// check if child is in open set
boolean openSetContains = openSet.contains(child);

if (!openSetContains) {
// add child reference to parent
if (configurator.isParentsMemorizingChildren())
current.getChildren().add(child);

// add child to open set
openSet.add(child);

} else {
// getting reference to child existing in open set
GraphState existingChild = openSet.get(child);

// replacing, if new child better than existing

if (openSet.getComparator().compare(child, existingChild) < 0) {
openSet.replace(existingChild, child);
// add child reference to parent (better child)
if (configurator.isParentsMemorizingChildren())

current.getChildren().add(child);

// removing from some other parent reference to worse existing child
existingChild.getParent().getChildren().remove(existingChild);

3

endTime = System.currentTimeMillis();

Apart from several auxiliary operations (time limit checking, memorizing the solutions, memoriz-
ing the best state so far) the important steps involved in the above procedure proceed as in most
of algorithms discussed earlier.

The two crucial places to note are invocations of callback methods: current.isSolution()
and current.generateChildren(). Their implementations must be provided by the user. Note
also that found solutions are not returned directly from the procedure, but memorized in the
internal field (List<GraphState> solutions) of the class. Once the wanted number of solutions
is reached (by default it is 1), the procedure is stopped.

The doExecute() method is not called directly by the user (it is under protected scope).
Instead, the user calls a wrapper method execute(). Its full listing is as follows.

public void execute() {
reset();

GraphSearchMonitor monitor = null;
Thread monitorThread = null;

if (configurator.isMonitorOn()) {
// starting monitor thread
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try {
Constructor<GraphSearchMonitor> constructor = (Constructor<GraphSearchMonitor>) Class
. forName (configurator.getMonitorClassName ())
.getConstructor (GraphSearchAlgorithm.class, Long.TYPE);
monitor = (GraphSearchMonitor) constructor.newInstance(this, configurator.
getMonitorRefreshTime ());
} catch (Exception e) {
monitor = new ConsoleGraphSearchMonitor(this, configurator.getMonitorRefreshTime());
e.printStackTrace();

}

monitorThread = new Thread(monitor);
monitorThread.start();

}
doExecute(); // actual search start

if (configurator.isMonitorOn()) {
monitor.stop();
// waiting for monitor thread to stop
while (true) {
if (!monitorThread.isAlive())
break;
try {
Thread.sleep (100);
} catch (InterruptedException ie) {
}

}

As one can note, the overhead around the actual doExecute () call boils down to: resetting the algo-
rithm and operations on the monitoring thread. As regards the latter, the monitoring thread allows
the user to watch the progress of a graph search, e.g.: number of states in Open and Closed sets,
number of solutions found so far, RAM usage, etc. There are two monitor classes provided with
SaC: sac.graph.ConsoleGraphSearchMonitor and sac.graph.GraphicalGraphSearchMonitor.
Their common abstraction is a superclass named: sac.graph.ConsoleGraphSearchMonitor —
the type actually used in the code. More details on monitors is given later in Section Before
starting a graph search, the suitable monitor is brought to life (using information from the configu-
rator object) and triggered as a side thread. After the doExecute () method is finished, the monitor
thread is stopped.

As regards the reset () method, it involves the following operations: (1) setting up the wanted
type for state identifiers (hash codes or strings) from the configurator objec (2) refreshing the
initial object (in particular: detaching the list of its descendants present after the previous search),
(3) clearing the solutions list, (4) nulling auxiliary references to current and best states, (5) setting
up data structures for Open and Closed sets. Below we show the listing of the reset () method.

protected void reset() {
Identifier.setType(this.configurator.getIdentifierType());

if (initial != null) {

®Its content might have changed since the last search execution.
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initial.refresh();
initial.getChildren().clear();
initial.refreshCosts();

}
solutions.clear();
bestSoFar = null;

current = null;

setupOpenAndClosedSets (openSet.getComparator());

The setupOpenAndClosedSets(...) method inspects the information stored in the configura-
tor object and instantiates, by means of the Java reflection mechanism, suitable implementations
for Open and Closed sets (before the search is started). The listing of the method is as follows.

protected void setupOpenAndClosedSets(Comparator<GraphState> openSetComparator) {

// open set

try {
Constructor<OpenSet> constructor = (Constructor<OpenSet>) Class.forName(configurator.

getOpenSetClassName ()) .getConstructor (Comparator.class);

this.openSet = (OpenSet) constructor.newInstance(openSetComparator);

} catch (Exception e) {
this.openSet = new OpenSetAsPriorityQueueFastContainsFastReplace(openSetComparator);
e.printStackTrace();

3

// closed set
if (configurator.isClosedSetOn())
try {
Constructor<ClosedSet> constructor = (Constructor<ClosedSet>) Class.forName(
configurator.getClosedSetClassName()).getConstructor();
this.closedSet = (ClosedSet) constructor.newInstance();
} catch (Exception e) {
this.closedSet = new ClosedSetAsHashMap();
e.printStackTrace();

This method is also of importance in the context of defining specific search algorithms (subclasses
of the general and abstract GraphSearchAlgorithm), which is discussed in the subsequent section.

3.2.3 Specific graph search algorithms

As one may have noted, the argument passed to the setupOpenAndClosedSets(...) method is a
comparator Comparator<GraphState> openSetComparator. It decides about the states retrieval
order associated with the Open set. Both the setupOpenAndClosedSets(...) method and the
mentioned comparator play an important role in defining the specific search algorithms. This can
be best depicted by the following example.

package sac.graph;

import java.util.Comparator;
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public class AStar extends GraphSearchAlgorithm {

public AStar(GraphState initial, GraphSearchConfigurator configurator) {
super (initial, configurator);
setupOpenAndClosedSets (new AStarComparator());

}

public AStar(GraphState initial) {
this(initial, null);
}

public AStar() {
this(null, null);
}

private class AStarComparator implements Comparator<GraphState> {
@Override
public int compare(GraphState gsl, GraphState gs2) {
double difference = gsl.getF() - gs2.getF(Q);
if (difference == 0.0) {
return gsl.getIdentifier().compareTo(gs2.getIdentifier());
} else {
return (difference > 0.0) ? 1 : -1;
}

The presented class is an actual definition of the A* algorithm in SaC. As one can see the code is
very short. The class extends the GraphSearchAlgorithm abstraction, and in its main constructor
it instantiates a suitable comparator for the Open set. For convenience, the comparator is defined
as an inner class (bottom part of the code). In the example, the comparator works as it should be
working for the case of A* algorithm — f function values are used for comparing states. In the
case of a tie, the comparison of identifiers decides. In other words, states with equal f values are
sorted lexicographically.

The proceedings described above are common for all specific graph search algorithms. To
demonstrate it, we present another example, this time of the BestFirstSearch class. The pro-
grammistic scheme is repeated, and the resulting code is very short again.

package sac.graph;
import java.util.Comparator;
public class BestFirstSearch extends GraphSearchAlgorithm {

public BestFirstSearch(GraphState initial, GraphSearchConfigurator configurator) {
super (initial, configurator);
setupOpenAndClosedSets (new BestFirstSearchComparator());

}

public BestFirstSearch(GraphState initial) {
this(initial, null);
}

public BestFirstSearch() {
this(null, null);
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}
private class BestFirstSearchComparator implements Comparator<GraphState> {

@Override
public int compare(GraphState gsl, GraphState gs2) {
double difference = gsl.getH() - gs2.getH(Q);
if (difference == 0.0) {
return gsl.getIdentifier().compareTo(gs2.getIdentifier());
} else {
return (difference > 0.0) ? 1 : -1;
}

3.2.4 Variants of Open and Closed sets

In SaC, actual implementations of Open or Closed sets are separated, in the programmistic sense,
from their abstractions — sac.graph.OpenSet and sac.graph.ClosedSet interfaces, respectively.
The listings below present the methods offered by these interfaces.
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package sac.graph;
import java.util.Comparator;

public interface OpenSet {
public void add(GraphState graphState);
public GraphState poll();
public GraphState peek();
public boolean contains(GraphState graphState);
public void replace(GraphState graphState, GraphState replacer);
public GraphState get(GraphState graphState);
public int size();
public boolean isEmpty();
public void clear();
public Comparator<GraphState> getComparator();
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package sac.graph;

public interface ClosedSet {
public boolean contains(GraphState graphState);
public GraphState get(GraphState graphState);
public void put(GraphState graphState);
public void remove(GraphState graphState);
public int size();
public boolean isEmpty();
public void clear();

Currently in SaC, available are three variants (implementations) of the Open set and two
variants of the Closed set, as listed in tables and The variants differ with respect to the
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computational complexity of operations involved. Faster variants are naturally more memory
consuming.

Table 3.1: Available variants (implementations) of the Open set and their computational complex-
ities.

class name (in sac. graph package) | poll [ contains/get | add [ replace |
OpenSetAsPriorityQueue O(log, n) O(n) O(log, 1) On)
OpenSetAsPriorityQueueFastContains O(log, n) o) O(log, 1) On)
OpenSetAsPriorityQueueFastContainsFastReplace | O(log, 1) o) O(log, n) | O(log, n)

Table 3.2: Available variants (implementations) of the Closed set and their computational complex-
ities.

| nazwa klasy (w sac.graph) | contains/get | put |
ClosedSetAsTreeMap O(log, n) O(log, 1)
ClosedSetAsHashMap o) o)

As regards the Open set, the firstimplementation listed in Table[3.T|is OpenSetAsPriorityQueue.
It is based on a standard priority queue class — java.util.PriorityQueue — offered within J2SE.
This class in turn is underneath based on a binary heap data structure. It is very likely that
the java.util.PriorityQueue class would be a programmer’s choice if a search algorithm was
to be implemented in Java from scratch. Although poll and add operations are of logarithmic
complexity — O(log, n) — for this class, the contains operation is linear — O(1). The reason is that
to look for a particular object within a binary heap (contains operation), one must sequentially
traverse all the objects it contains. As regards the replace operation, it is worth to remark that a
suitable method for that purpose is not offered directly by J2SE in the java.util.PriorityQueue
class. In order to do a replacement one must combine several methods. First, find the object by
iterating over all objects in the queue (linear time), then remove it (logarithmic time), and finally
insert its replacement into the heap (logarithmic time). Therefore, the finding part is the slowest,
which makes the complexity of the whole operation O(n).

The second variant of the Open set is the OpenSetAsPriorityQueueFastContains class. It is
faster from the first variant with respect to the contains operation. On the low level, apart from a
standard priority queue we have equipped this class with an auxiliary hash map (java.util.HashMap).
The hash map memorizes the pairs <Identifier, GraphState>, where the Identifier works as
a key and the reference to GraphState works as a value in the map. Every time a state is being
added to the Open set, it is added both the priority queue and the hash map. Owing to the latter,
one is able later to quickly check, in O(1) time, if a state with a particular identifier is present in
Open. Morover, since identifiers are coupled with references to states, one can also quickly check
if the value of a suitable comparing function (g, f, h, depth, etc.) in the existing state is better than
for the state currently processed. By that one knows if a replace operation is necessary.

The third variant of the Open set is the class: OpenSetAsPriorityQueueFastContainsFastReplace.
This is the variant turned on by default. The class uses a custom implementation of the binary
heap, provided by the authors of SaC. The heap is implemented as a dynamic array data structure
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(java.util.ArrayList). Asan auxiliary structure, a hash map is again involved. Firstly, this hash
map makes the contains operation O(1) fast (as in the former variant). But secondly (and more
importantly), this hash map allows also to have a quick access to array indices of states contained
in the heap. The following code excerpt shows how this is achieved.

package sac.graph;

public class OpenSetAsPriorityQueueFastContainsFastReplace extends OpenSetImpl {

private ArraylList<GraphState> binaryHeap;
private Map<Identifier, MapEntry> map;

private class MapEntry {
private GraphState graphState;
private int binaryHeapIndex;

3

public OpenSetAsPriorityQueueFastContainsFastReplace(Comparator<GraphState> comparator) {
super (comparator) ;
binaryHeap = new ArraylList<GraphState>(1024 * 1024);
map = new HashMap<Identifier, MapEntry>(1024 * 1024, (float) 0.75);

@Override
public void replace(GraphState graphState, GraphState replacer) {
Identifier identifier = graphState.getIdentifier();
Integer index = map.get(identifier).getBinaryHeapIndex();
if (index == null)
return;
binaryHeap.set(index.intValue (), replacer);
map.get(identifier).setGraphState(replacer);
reheapUp (index) ;
}

protected void reheapUp(int childIndex) {

if (childIndex == 0)
return; // stop of recursion

int parentIndex = (childIndex - 1) / 2;

GraphState parent = binaryHeap.get(parentIndex);

GraphState child = binaryHeap.get(childIndex);

if (comparator.compare(parent, child) > 0) { // comparator comes from OpenSetImpl
binaryHeap.set(parentIndex, child);
binaryHeap.set(childIndex, parent);
map.get(child.getIdentifier()).setBinaryHeapIndex (parentIndex);
map.get(parent.getIdentifier()).setBinaryHeapIndex(childIndex);
reheapUp (parentIndex);

When a replacement is to be done, the suitable index is read from the map and the replacing
(better) state is inserted into the heap related array under that index. Then, the heap has to be
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reorganized upwards — reheapUp(...) method — starting on from the new state, so that the
heap condition is satisfied. This is done in O(log, n) time.

We now move on to discuss Closed set variants.

Currently in SaC, available are two Closed set variants. The default one is represented by
the class: ClosedSetAsHashMap. As the name suggests, it is based on a standard (J2SE) hash
map — java.util.HashMap — allowing for O(1) complexity of all operations one needs in graph
searching: put, get, contains. The trade-off is obviously in high memory consumption. By
default, an instantiation of the ClosedSetAsHashMap class, creates underneath a map with an
initial capacity of ~ 8 - 10° entries, and the load factor of 0.75 (as shown in the listing below).

package sac.graph;

public class ClosedSetAsHashMap implements ClosedSet {
private Map<Identifier, GraphState> map;
public ClosedSetAsHashMap () {

this.map = new HashMap<Identifier, GraphState>(8 * 1024 * 1024, (float) 0.75);
}

The second Closed set variant — ClosedSetAsTreeMap — has been provided in SaC with an
intention to mitigate some of memory consumption problems one can come accross more quickly
when using a slightly faster hash map based variant. The ClosedSetAsTreeMap implementation is
based on the J2SE’s java.util.TreeMap class, which in turn underneath is based on the red-black
tree data structureﬁ The red-black tree guarantees the complexity of all important (for graph
searching) operations — put, get, contains — to be O(log, n).

®Red-black trees are self-balancing binary search trees. The idea is due to Bayer (1972) who originally named the
structure as symmetric binary B-Tree. The contemporary modern name is due to the paper (Guibas and Sedgewick, 1978).
Balance of the tree is preserved by painting each tree node with one of two colors (by convention red and black)
and imposing certain properties on occurrence of the colors. The properties are designed in such a manner that tree
rearrangements and repaintings are carried out efficiently — in O(log, n) time. The tree is typically not perfectly
balanaced, but guarantees that the distance from the root to the furthest leaf is at maximum twice as long as the distance
to the closest leaf. This makes the complexity of all crucial operations proportional to the height of the tree, thus also
O(log, n)
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3.2.5 Configuration options for searching graphs

On several occasions we have mentioned the usage of a GraphSearchConfigurator object. Below,
we present a brief code listing of this class, with all configuration options and their default values.
We purposely leave the javadocs present in the listing to make the meaning of options more clear.
Every configuration option can be accessed by a suitable getter or setter (that are skipped in the
listing).

public class GraphSearchConfigurator {

Vi
* Identifier type for states. By default: HASH_CODE.
:':/
private IdentifierType identifierType = IdentifierType.HASH_CODE;
VA
* Class name for open set. By default: sac.graph.OpenSetSacFast.
7‘:/
private String openSetClassName = OpenSetAsPriorityQueueFastContainsFastReplace.class.getName
(OH
SR
#* Is closed set on. By default: true. Closed set can be off when the search space is a tree
(not a graph with cycles).
7.‘/

private boolean closedSetOn = true;

/ * %
* Class name for closed set. By default: sac.graph.ClosedSetAsHashMap.
* /

private String closedSetClassName = ClosedSetAsHashMap.class.getName();

SR
* Do parents memorize references to their children. Set to false for lower memory usage (
WARNING: in that case drawing graph via GraphViz is impossible). By default: false.
:’:/
private boolean parentsMemorizingChildren = false;

Vi
“ Wanted number of solutions. By default: 1.
*/

private int wantedNumberOfSolutions = 1;

/ xS
# Time limit in milliseconds. By default: ’infinity’ in long type (Long.MAX_VALUE).
* /

private long timelLimit = Long.MAX_VALUE;

Vi
* Is monitor on. By default: false;
*/

private boolean monitorOn = false;

SR
* Class name for monitor. By default: sac.graph.DefaultConsoleMonitor.
*/

private String monitorClassName = ConsoleGraphSearchMonitor.class.getName();
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Vil
* Monitor time period. By default: 1000 ms.
* /

private long monitorRefreshTime = 1000;

public GraphSearchConfigurator() {
}

public GraphSearchConfigurator(String propertiesFilePath) throws Exception {

}

// getters, setters

A configurator can be instatiated either by a default constructor with no arguments —
GraphSearchConfigurator(), or from a properties text file — GraphSearchConfigurator(String
propertiesFilePath). The names of options in the properties file are uppercased versions of field
names, and with underscores separating successive words. Below, we show a possible exemplary
contents of a configuration .properties file with some non-default values.

#Example of graph configurator settings

identifierType=STRING
openSetClassName=sac.graph.OpenSetAsPriorityQueueFastContains
closedSetOn=true
closedSetClassName=sac.graph.ClosedSetAsHashMap
parentsMemorizingChildren=false

wantedNumberOfSolutions=5

timeLimit=Long.MAX_VALUE

monitorOn=false
monitorClassName=sac.graph.GraphicalGraphSearchMonitor
monitorRefreshTime=250

3.3 Examples

3.3.1 Sliding puzzle

The sliding puzzle is a one-player recreation invented by Noyes Chapman in 1880. The player is
given a board containing flat pieces — tiles — commonly with a picture or numbers drawn on
them. In the initial state the pieces are shuffled. There is an empty space in the place of one of the
tiles and the player can slide adjacent tiles into the empty space. The goal is to bring the board back
to its original arrangement. In contrary to human players, from a computer solver we typically
require also that the found sequence of moves is minimal.

Most commonly the boards with sliding puzzles are square grids, in general of size n X 1, see
Fig. Due to one tile taken away, the puzzle is also known as (n? — 1)-puzzle. Eight-puzzles
are quite easily solvable by children, but some fifteen-puzzle instances can already be out of reach
for adults, especially if the minimal path to solution should be found.

"Images aquired from Google Images search engine.
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Figure 3.1: Sliding puzzle boards.

Implementation of sliding puzzle state

Below we show an implementation of a sliding puzzle state using SaC. We represent the puzzle as
a one-dimensional array of bytes and implement the required routines: generation of decendants
— generateChildren(), identification — hashCode (), termination — isSolution(). For conve-
nience, we introduce a copying constructor and some helper methods: to get possible moves, to
make a move, and to shuffle the puzzle. In the ending static block we attach the heuristics to the
class — HFunctionLinearConflicts, which is discussed a bit later on.

public class SlidingPuzzle extends GraphStateImpl {

protected static byte n;

protected static byte N; // N =n * n
protected byte emptyIndex;

protected byte[] board;

public SlidingPuzzle(int n) {
SlidingPuzzle.n = (byte) n;
SlidingPuzzle.N = (byte) (n * n);
board = new byte[N];
for (byte i = 0; i < N; i++)
board[i] = i;
emptyIndex = 0;
}

public SlidingPuzzle(SlidingPuzzle parent) {
board = new byte[N];
for (byte i = 0; i < N; i++)
board[i] = parent.board[i];
emptyIndex = parent.emptyIndex;
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public LinkedList<Byte> getPossibleMoves() {
LinkedList<Byte> list = new LinkedList<Byte>();
if ((emptyIndex % n) + 1 < n)
list.add((byte) (emptyIndex + 1));
if ((emptyIndex % n) - 1 >= 0)
list.add((byte) (emptyIndex - 1));
if (emptyIndex + n < N)
list.add((byte) (emptyIndex + n));
if (emptyIndex - n >= 0)
list.add((byte) (emptyIndex - n));
return list;
}

private void makeMove (byte newEmptyIndex) {
board[emptyIndex] = board[newEmptyIndex];
board[newEmptyIndex] = 0;
emptyIndex = newEmptyIndex;

}

public void shuffle(int numberOfMoves) {
Random randi = new Random();
for (int i = 0; i < numberOfMoves; i++) {
List<Byte> moves = getPossibleMoves();
int index = randi.nextInt(moves.size());
byte mov = moves.get(index);
makeMove (mov) ;

3

@Override
public List<GraphState> generateChildren() {
List<GraphState> list = new LinkedList<GraphState>();
Iterator<Byte> it = getPossibleMoves().listIterator();
while (it.hasNext()) {
SlidingPuzzle child = new SlidingPuzzle(this);
child.makeMove(it.next());
String moveName = "D";
if (this.emptyIndex - 1 == child.emptyIndex)
moveName = "L";
else if (this.emptyIndex + 1 == child.emptyIndex)
moveName = "R";
else if (this.emptyIndex - n == child.emptyIndex)
moveName = "U";
child.setMoveName (moveName) ;
list.add(child);

}

return list;
}
@Override

public int hashCode() {
return Arrays.hashCode(board);
}

public String toString() {
StringBuilder stringBuilder = new StringBuilder();
StringBuilder line = new StringBuilder();
final int cellSize = 5;
for (int i = 0; i < n *
line.append("-");

cellSize + 1; i++)

57
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stringBuilder.append(line).append("\n");
int k = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int boardAtK = board[k];
stringBuilder.append(String. format ("|%1$3d.", boardAtK));
k++;
}
stringBuilder.append (" |\n").append(line);
if (i <n - 1)
stringBuilder.append("\n");

}

return stringBuilder.toString();
}
@Override

public boolean isSolution() {
for (byte i = 0; i < N; i++)
if (board[i] != i)
return false;
return true;

}
static {

setHFunction(new HFunctionLinearConflicts());
}

Example of an easy eight-puzzle

The program beneath solves the following puzzle: (0,1,5,8,2,7,4, 3, 6). The puzzle was created by
shuffling (starting from a correctly arranged board) with one hundred random moves, but turns
out to be an easy one to solve.

SlidingPuzzle slidingPuzzle = new SlidingPuzzle(3);
slidingPuzzle.shuffle(100);
System.out.println ("SLIDING_.PUZZLE_.TO_SOLVE: \n" + slidingPuzzle);

GraphSearchAlgorithm algorithm = new AStar(sp);
algorithm.execute();
SlidingPuzzle solution = (SlidingPuzzle) algorithm.getSolutions().get(0);

System.out.println("SOLUTION: \n" + solution);

System.out.println("PATHLLENGIH:." + solution.getPath().size());
System.out.println ("MOVESLALONG.PATH:." + solution.getMovesAlongPath());
System.out.println("CLOSED.STATES:." + algorithm.getClosedStatesCount());
System.out.println("OPENLSTATES:." + algorithm.getOpenSet().size());
System.out.println ("DURATION_.TIME:." + algorithm.getDurationTime() +

'

"ms");

The program outputs the following result to the console and the graph searched is depicted in
Fig.

SLIDING PUZZLE TO SOLVE:
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PATH LENGTH: 17

SEQUENCE OF MOVES: [R, D, L, D, R, R, U, L, L, D, R, R, U, U, L, L]
CLOSED STATES: 26

OPEN STATES: 17

DURATION TIME: O ms
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Figure 3.2: Graph searched by SaC using “linear conflicts” heuristics for an eight-puzzle

0,1,5,8,2,7,4,3,6).
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Heuristics for sliding puzzle

An insightful reading on how to construct heuristics in general can be found in (Hansson, Mayer
and Yung, 1985). The authors analyze in particular the sliding puzzle problem and describe three
heuristics for it: “Misplaced tiles”, “Manhattan”, “Manhattan + linear conflicts”, together with
proofs of their admissibility. Below, we explain them in brief and show their implementations in
SaC.

“Misplaced tiles” This heuristics is a primitive one. It boils down to counting cells (tiles) that are
in a wrong place, except for the empty cell. This can be regarded as a relaxed model of the sliding
puzzle in which we ignore the actual rules and we are able to freely pick up cells and put them
down into the right location, as if each such manipulation — “move” — was of cost 1. Clearly the
maximum value of this heuristics is n? — 1, which can be a significant underestimation of the true
minimum cost. Here is an implementation.

public class HFunctionMisplacedTiles extends StateFunction {

@Override
public double calculate(State state) {
SlidingPuzzle slidingPuzzle = (SlidingPuzzle) state;
double h = 0.0;
for (int i = 0; i < slidingPuzzle.board.length; i++) {
if ((i != slidingPuzzle.emptyIndex) && (slidingPuzzle.board[i] != i))
h += 1.0;
}
return h;

“Manhattan” This is a popularly known heuristics. It calculates the sum of cell distances, in
Manhattan metrics, to their correct location (the distance for the empty cell is excluded). In terms
of relaxed models, this can be regarded as a variant of the sliding puzzle in which we do not have
to make moves using the empty cell, but rather each cell can move independently. While traveling
the tiles may freely stack on one another.

public class HFunctionManhattan extends StateFunction {

@Override
public double calculate(State state) {
SlidingPuzzle slidingPuzzle = (SlidingPuzzle) state;
double h = 0.0;
for (int i = 0; i < slidingPuzzle.board.length; i++) {
if (i !'= slidingPuzzle.emptyIndex)
h += manhattan(slidingPuzzle, 1i);
}
return h;
}

protected int manhattan(SlidingPuzzle slidingPuzzle, int index) {
int n = SlidingPuzzle.n;
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int il = slidingPuzzle.board[index] / n;
int j1 = slidingPuzzle.board[index] % n;
int i2 = index / n;
int j2 = index % n;

return Math.abs(il - i2) + Math.abs(jl - j2);

“Manhattan + linear conflicts” This is the most advanced heuristics of the three. Apart from
the Manhattan distances summand it also includes the second summand being the number of so
called linear conflicts multiplied by two. What is a linear conflict? Imagine that a first row of a
tifteen-puzzle is as follows: 1,2,3,0. In this row the tiles are not in their correct locations, the sum
of Manhattan distances is 3, but there is no linear conflict, since by shifting the 0 element to the left
three times the row gets correctly arranged. Now consider the following row: 2,1, 3, 0. The sum of
Manhattan distances is again 3, but there exist a linear conflict, since 1 is after 2. In consequence,
one of these elements at some point during the actual solving will have to be brought down to
the second row, and after some time, brought back up. That is why each linear conflict requires at
least two additional moves. Linear conflicts shoud be detected both in rows and columns. Here is
an implementation.

public class HFunctionLinearConflicts extends HFunctionManhattan {

@Override
public double calculate(State state) {

SlidingPuzzle slidingPuzzle = (SlidingPuzzle) state;

return super.calculate(state) + linearConflicts(slidingPuzzle);
}

protected int linearConflicts(SlidingPuzzle slidingPuzzle) {
int n = SlidingPuzzle.n;
byte[] table = slidingPuzzle.board;

int h = 0;

int[] group = new int[n];
int[] conflicts = new int[n];

// rows
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
group[j] = table[i * n + j];

for (int j = 0; j < n - 1; j++) {

if ((group[j]l / n != i) && (group[j]l > ®)) // is this row the goal row for group[
Jj]
conflicts[j] = 0;

else {
for (int k = j + 1; k < n; k++) {

if ((group[k] / n == i) && (group[k] > 0) && (group[j] > group[k]))
conflicts[j]++;
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// while there remain some positive conflicts[j]
while (true) {
int max = Integer.MIN_VALUE;
int jMax = -1;
for (int j = 0; j < n - 1; j++)
if (conflicts[j] > max) {
max = conflicts[j];

jMax = j;
}
if (max <= 0)
break;

conflicts[jMax] =
for (int k = jMax
if ((group[k]

h += 2.0;
conflicts[k]--;

’1; k < n; k++)
n == i) && (group[jMax] > groupl[k])) {

~N + @

}

// columns
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
group[j] = table[j * n + i];

for (int j = 0; j <n - 1; j++) {

if ((group[j] % n != i) && (group[j] > 0)) // is this column the goal row for

group[j]
conflicts[j] = 0;
else {
for (int k = j + 1; k < n; k++) {
if ((group[k] % n == i) && (group[k] > 0) && (group[j] > group[k]))
conflicts[j]++;

}

// while there remain some positive conflicts[j]
while (true) {
int max = Integer.MIN_VALUE;
int jMax = -1;
for (int j = 0; j < n - 1; j++)
if (conflicts[j] > max) {
max = conflicts[j];
jMax = j;
}

if (max <= 0)
break;
conflicts[jMax] = 0;
for (int k = jMax + 1; k < n; k++)
if ((group[k] % n == i) && (group[jMax] > group[k])) {
h += 2.0;
conflicts[k]--;

3

return h;

63
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Comparison of heuristics — an experiment

In SaC, one can quite conveniently carry out a comparison of heuristics for the same fixed problem,
iterating over them in a loop. Here is a sample code.

StateFunction[] heuristics = {new HFunctionMisplacedTiles(), new HFunctionManhattan(), new
HFunctionLinearConflicts()};
for (StateFunction h : heuristics) {
SlidingPuzzle.setHFunction(h);
GraphSearchAlgorithm algorithm = new AStar(slidingPuzzle); // slidingPuzzle object defined
earlier
algorithm.execute();
SlidingPuzzle solution = (SlidingPuzzle) algorithm.getSolutions().get(0);

// printing information to the console

Beneath, we show two outputs of such comparisons. The first is for the original example
with n = 3 — puzzle (0,1,5,8,2,7,4,3,6), and the second is for the n = 4 case — puzzle
(0,1,7,10,6,5,3,2,12,4,14,11,9,13,8, 15).

SLIDING PUZZLE TO SOLVE:

HEURISTICS: sac.examples.slidingpuzzle.HFunctionMisplacedTiles
PATH LENGTH: 17

MOVES ALONG PATH: [R, D, L, D, R, R, U, L, L, D, R, R, U, U, L, L]
CLOSED STATES: 440

OPEN STATES: 268

DURATION TIME: 30 ms

HEURISTICS: sac.examples.slidingpuzzle.HFunctionManhattan

PATH LENGTH: 17

MOVES ALONG PATH: [R, D, L, D, R, R, U, L, L, D, R, R, U, U, L, L]
CLOSED STATES: 38

OPEN STATES: 26

DURATION TIME: O ms

HEURISTICS: sac.examples.slidingpuzzle.HFunctionLinearConflicts
PATH LENGTH: 17

MOVES ALONG PATH: [R, D, L, D, R, R, U, L, L, D, R, R, U, U, L, L]
CLOSED STATES: 26

OPEN STATES: 17

DURATION TIME: O ms

SLIDING PUZZLE TO SOLVE:
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HEURISTICS: sac.examples.slidingpuzzle.HFunctionMisplacedTiles

PATH LENGTH: 31

MOVES ALONG PATH: [R, R, R, D, L, D, D, L, L, U, R, R, U, U, L,D,L,D,R,D,R,U,U, U, R,D,L, L, U, L]
CLOSED STATES: 719791

OPEN STATES: 682571

DURATION TIME: 11258 ms

HEURISTICS: sac.examples.slidingpuzzle.HFunctionManhattan

PATH LENGTH: 31

MOVES ALONG PATH: [R, R, R, D, L, D, D, L, L, U, R, R, U, U, L,D,L,D,R,D,R,U,U, U, R,D,L, L, U L]
CLOSED STATES: 2129

OPEN STATES: 21600

DURATION TIME: 28 ms

HEURISTICS: sac.examples.slidingpuzzle.HFunctionLinearConflicts

PATH LENGTH: 31

MOVES ALONG PATH: [R, R, R, D, L, D, D, L, L, U, R, R, U, U, L,D,L,D,R,D,R,U,U, U, R,D,L, L, U, L]
CLOSED STATES: 919

OPEN STATES: 942

DURATION TIME: 38 ms

Obviously, regardless of the heuristics applied we obtain solution paths of the same length. But,
one can clearly note that better heuristics, i.e. more tight lower bounds on the true cost, lead to
smaller graphs being searched — fewer closed and open states. The graphs from both examples
are depicted in figures 3.3| (tree-like layout) and [3.4{ (star-like layout).
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“Misplaced tiles” (708 states in total)

A

“Manhattan” (64 states in total)

“Manhattan + linear conflicts” (43 states in total)

Figure 3.3: Graphs searched by SaC using different heuristics for the same initial eight-puzzle:
(0,1,5,8,2,7,4,3,6).
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“Manhattan” (4 229 states in total)

AN
AR
«ﬂr/ﬂlﬁf/ﬁf// \

“Manhattan + linear conflicts” (1 861 states in total)

Figure 3.4: Graphs searched by SaC using different heuristics for the same initial fifteen-puzzle:

(0,1,7,10,6,5,3,2,12,4,14,11,9,13, 8, 15). “Misplaced tiles” heuristics was omitted due to too large

graph. Visualizations were rendered by the neato layouter in Graphviz.
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Some harder fifteen-puzzles

In this section we show some results obtained using SaC for harder sliding puzzle examples.
These examples are taken as a short excerpt from the work (Hansson et al., 1985). We put away
the “Misplaced tiles” heuristics from considerations as being practically useless. Experiments are
carried out using two algorithms A* and IDA".

In the table[3.3| presented are five selected instances of a fifteen-puzzle. The numbering shown
in the left-most column corresponds to the numbering in (Hansson et al., 1985). The instances are
ordered top down from the easiest one (i.e. requiring the least of time to be solved) towards the hard-
est one. Before executing the search we explicitly imposed the RAM memory limit on the JVM to be
2 GB. This was meant to demonstrate that only two first of the examples allow us to solve them by
the A* algorithm being more memory consuming than IDA*, which does not keep record of closed
set. We should mention that we have used default SaC configuration settings which make the
Open set to be implemented by sac.graph.OpenSetAsPriorityQueueFastContainsFastReplace
and the closed set by sac.graph.ClosedSetAsHashMap — both fastest but the most memory con-
suming structures. Obviously the duration time of A* for the examples it managed to solve was
shorter than in the case of IDA".

o path . . A* .
no. it longth | coeeg |time [s] closed tme [5
and open
85 |4,7,13,10,1,2,9,6,12,8,14,5,3,0,11,15| 44 |1.5-107| 46.7 1.7-10°, 1.6-10° 2.8
5 |4,7,14,13,10,3,9,12,11,5,6,15,1,2,8,0| 56 |2.6-107| 60.5 1.6-10°, 1.4-10° 34.4
2 (13,5,4,10,9,12,8,14,2,3,7,1,0,15,11,6| 55 |3.8-107| 85.6 2.6-10°, 2.1-10° 77.1
out of RAM (2 GB) at:
54 |12,11,0,8,10,2,13,15,5,4,7,3,6,9,14,1| 56 [1.9-10%| 4425 2.7-10°, 2.3-10° —
out of RAM (2 GB) at:
1 [14,13,15,7,11,12,9,5,6,0,2,1,4,8,10,3| 57 [2.5-10%| 634.8 2.3-10°%, 2.0-10° —

Table 3.3: Performance of A* and IDA" algorithms for five selected instances of fifteen-puzzle taken
from (Hansson et al., 1985).

Sliding puzzle console solver

Along with the distribution of the SaC library comes a console solver dedicated for the sliding
puzzle. The solver can be accessed by the included run_slidingpuzzle.bat file (or directly by
the sac.examples.slidingpuzzle.ConsoleSolver class). A default execution triggered via

java -Xmx2048M -cp "sac-1.0.0.jar;jfreechart-1.0.14.jar;jcommon-1.0.17.jar" sac.examples.slidingpuzzle.ConsoleSolver

(the line from the .bat file) produces the following output to the screen with help information and
a default eight puzzle solved:

SLIDING PUZZLE SOLVER

PARAMETERS:
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-sp - input path to text file (one line, comma-separated) with sliding puzzle to be solved (’0®’ assumed as an empty tile)
-a - full class name of graph search algorithm to be used (deafault: sac.graph.AStar)

-h - full class name of heuristic function be used (deafault: sac.examples.slidingpuzzle.HFunctionLinearConflicts)

-c - input path to .properties file with configuration settings for search process

-g - output path to .dot file in Graphviz format, representing graph that was searched

-gWithContent - true/false flag stating if points in Graphviz graph should be drawn with a content or no

DEFAULT SLIDING PUZZLE: '9,3,2,4,7,8,1,5,6.
SLIDING PUZZLE TO SOLVE:

o1 31 2]
41 71 81
11 51 61

ALGORITHM: sac.graph.AStar.

HEURISTICS: sac.examples.slidingpuzzle.HFunctionLinearConflicts.
SOLVING. ..

DURATION TIME: 10 ms.

CLOSED STATES: 45.

OPEN STATES: 33.

SOLUTION:

PATH LENGTH (INCLUDING TERMINAL STATES): 17.
PATH AS SEQUENCE OF MOVES: [D, R, D, R, U, L, L, D, R, U, U, L, D, R, U, L].
ALL DONE.

3.3.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most recognizable problems within computer
science. The problem can be formulated as follows: Given is a set of places with connections (roads)
between them. A salesman departs from one of the places (distinguished as the starting point), must visit
all the places and return to the place of origin. The salesman is allowed to visit each place only once. The
goal is to find the shortest route for the a saleseman. In graph terms, the TSP can be reformulated as
the problem of finding a Hamiltonian cycle with the smallest cost for the given graph.

In general, the TSP is NP-hard, although some of its large instances have been successfully
solved (e.g. a TSP tour covering all 24978 towns in Sweden®). One may note that for n places
and a complete graph of connections, a naive approach checking exhaustively all possible routes
must perform (n — 1)! iterations, which is exponential with respect to n. It should also be noted
that a greedy approach, constisting in visting the nearest place at every step, leads in general to
non-optimal solutions. In particular, for TSPs with places distributed randomly and uniformly on
a plane (Euclidean TSP) the greedy approach returns on average routes longer by approximately
25% than an optimal route (Johnson and McGeoch, 1997). On the other hand, it is also possible
to construct such ‘malicious” examples for which the greedy approach leads to the worst routes
(Gutin, Yeo and Zverovich, 2002).

The exemplary implementation of a TSP solver in SaC, described in the following section, is
based on a well known and simple heuristics using the concept of a minimum spanning tree (MST).
For a survey on more advanced and recent methods related to the TSP the reader is addressed e.g. to
the following works: (Rego, Gamboa, Glover and Osterman, 2011; Kaplan, Shafrir, Lewenstein

8The project was carried out by a research team directed by David Applegate from AT&T Labs, http://www.math.
uwaterloo.ca/tsp/sweden/.
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and Sviridenko, 2003).

Implementation of TSP state

Our solver is restricted to TSPs related to symmetric graphs with complete sets of connec-
tions. Before presenting the actual state implementation, we first show some code excerpts of
auxiliary base classes, namely: sac.examples.tsp.Place, sac.examples.tsp.Connection and
sac.examples.tsp.Map. For full versions the reader is addressed to source codes of the library.

A place is represented by its x, y coordinates and an id number (for convenience). It also
contains a set of references to the connections outgoing to other places. In the excerpt below we
omit getters and setters (marked by .. .).

O O NONUTH W~

public class Place implements Comparable<Place> {

private int id;

private double x;

private double y;

private SortedSet<Connection> connections = null;

public Place(int id, double x, double y) {
this.id = id;

this.x = x;

this.y = y;

connections = new TreeSet<Connection>();
}
@Override

public int compareTo(Place otherPlace) {
return id - otherPlace.id;

}

@Override

public boolean equals(Object otherPlace) {
Place otherPlace2 = (Place) otherPlace;
return (compareTo(otherPlace2) == 0);

A connection — an edge in our graph — is defined by a pair of places and is equipped with its
cost precalculated prior to the instantiation. We keep the two references to places always sorted
according to their ids. Again, in the excerpt we omit getters and setters.

O OO UTHWN

[y

public class Connection implements Comparable<Connection> {

null;
null;

private Place placel
private Place place2
private double cost;

public Connection(Place placel, Place place2, double cost) {
if (placel.compareTo(place2) < 0) {
this.placel = placel;
this.place2 = place2;
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} else {
this.placel = place2;
this.place2 = placel;
}
this.cost = cost;
}
@Override
public String toString() {
return "(" + placel.getId() + "," + place2.getId() + ")";
}
@Override

public int compareTo(Connection otherConnection) {
int placelIdDifference = placel.getId() - otherConnection.getPlacel().getId(Q);
if (placelIdDifference == 0)
return place2.getId() - otherConnection.getPlace2().getId();
return placelIdDifference;
}

@Override

public boolean equals(Object otherConnection) {
Connection otherConnection2 = (Connection) otherConnection;
return (compareTo(otherConnection2) == 0);

A map object represents the world (the graph) for our salesman. It stores references to places
and connections in data structures convenient for the future search. One of the class constructors
creates a set of n places, distributed randomly within a unit square, together with all their con-
nections. The place with id 1 is treated as the starting point. In the code excerpt below we omit:
getters, setters, a constructor and auxiliary methods for populating the map with a specific TSP
from a text file, and the code related to drawing operations (visualization purposes).

public class Map {

private SortedMap<Integer, Place> places = null;
private Place startPlace = null;
private SortedSet<Connection> connections = null;

private static final double MIN_X
private static final double MAX_X
private static final double MIN_Y
private static final double MAX_Y

public Map(int n) {
calculateDrawingConstants();

places = new TreeMap<Integer, Place>();
connections = new TreeSet<Connection>();

for (int i = 1; i <= n; i++) {
Place place = new Place(i, MIN_X + Math.random() * (MAX_X - MIN_X), MIN_Y + Math.
random() * (MAX_Y - MIN_Y));
places.put(i, place);
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}
calculateCosts();

startPlace = places.get(l); // first place as start place

}

private void calculateCosts() {
int n = places.size();
for (int i = 1; i <= n;
for (int j =i + 1; j <= n; j++) {

Place placel = places.get(i);

Place place2 = places.get(j);

double cost = Math.sqrt((placel.getX() - place2.getX()) * (placel.getX() - place2

.getX()) + (placel.getY() - place2.getY(Q))
* (placel.getY() - place2.getY()));

Connection connection = new Connection(placel, place2, cost);

connections.add(connection);

placel.getConnections().add(connection);

place2.getConnections().add(connection);

}

@Override
public String toString() {
StringBuilder result = new StringBuilder("");
int i = 0;
for (java.util.Map.Entry<Integer, Place> entry : places.entrySet()) {
Integer id = entry.getKey(Q);
Place place = entry.getValue();
result.append(id + ":o(" + place.getX() + ",." + place.getY() + ")");
if ((++1i) < places.size())
result.append("\n");
}

return result.toString(Q);

Now, we can move on to our implementation of a TSP state itself. In the approach we decided
for, states represent partial routes of the salesman. For example, for the case of n = 5 places, the
initial state is the place with id 1, its direct descendants are states: 1 - 2,1 — 3,1 — 4,1 — 5,
and after creation they are suitably placed in the Open queue by a search algorithm. Suppose that
1 — 4 turns out to be the state of lowest partial costﬁ and is polled from the queue in the first order.
Its descandants are states: 1 54 —- 2,1 -4 — 3,1 » 4 — 5. And the scheme above continues
until the search algorithm polls from the queue a terminal state i.e. a route which uses all the places
and comes back to the place of origin. We remark that the first such route polled from the queue
is guaranteed to be the optimal routelﬂ

In the following code listing, we present the most important excerpts of our TSP state class

°In the case of Dijkstra algorithm, the partial cost is just the ¢ summand i.e. just the exact known cost of the route
already travelled through. In the case of A*, the cost is defined by the g + I sum, i.e. the known cost as before plus an
optimistic estimate on the remaining cost.

OProvided that cost functions ¢ and h are correctly defined by the programmer.
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(sac.examples.tsp.TravelingSalesmanProblem). We leave some of the comments present in the
code, shown for clarification of some variables or operations.

public class TravelingSalesmanProblem extends GraphStateImpl {

VA
* Reference to the map, common for all states.
* /

public static Map map = null;

private List<Connection> route = null;
private List<Integer> routeAsIds = null;
private Place currentPlace = null;

private SortedSet<Place> remaining = null;

Vi
* Minimum spanning tree built on remaining places.
*/

private MinimumSpanningTree mst = null;

Vi
* Best (cheapest) connection from the current place to some place in the minimum spanning
tree of remaining places.
:':/

private Connection bestConnectionToMST = null;

public TravelingSalesmanProblem(Map map) {
TravelingSalesmanProblem.map = map;
route = new ArraylList<Connection>();
currentPlace = map.getStartPlace();
routeAsIds = new ArraylList<Integer>();
routeAsIds.add(currentPlace.getId());
remaining = new TreeSet<Place>();
remaining.addAll (map.getPlaces().values());

}

public TravelingSalesmanProblem(TravelingSalesmanProblem parent) {

route = new ArraylList<Connection>();

for (Connection connection : parent.route)
route.add(connection);

routeAsIds = new ArraylList<Integer>();

for (Integer id : parent.routeAsIds)
routeAsIds.add(id);

currentPlace = parent.currentPlace;

remaining = new TreeSet<Place>();

remaining.addAll (parent.remaining);

}

@Override
public List<GraphState> generateChildren() {
List<GraphState> children = new LinkedList<GraphState>();
for (Connection connection : currentPlace.getConnections()) {
Place otherPlace = (connection.getPlacel().equals(currentPlace)) ? connection.
getPlace2() : connection.getPlacel();
if (remaining.contains(otherPlace)) {
if ((otherPlace.equals(map.getStartPlace())) && (remaining.size() > 1))
continue;
TravelingSalesmanProblem child = new TravelingSalesmanProblem(this);
child.route.add(connection);
child.routeAsIds.add(otherPlace.getId());
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}
3

child.currentPlace = otherPlace;
child.remaining.remove (otherPlace);

child.setMoveName (String.valueOf(otherPlace.getId()));
children.add(child);

return children;

}

@Override

public boolean isSolution() {
return remaining.isEmpty();

}

@Override

public String toString() {
return routeAsIds.toString();

}

@Override

public int hashCode() {
return routeAsIds.hashCode();

}

static {

setHFunction(new StateFunction() {
@Override
public double calculate(State state) {

TravelingSalesmanProblem tsp = (TravelingSalesmanProblem) state;

// checking if parent’s MST can be used (specifically: if the place to
// which parent’s bestConnectionToMST leads does not fork further)

if (tsp.parent != null) {
TravelingSalesmanProblem tspParent = (TravelingSalesmanProblem) tsp.parent;
Connection singleConnection = tspParent.mst.isPlaceWithSingleConnection(tsp.
currentPlace);
if (singleConnection != null) {

tsp.mst = new MinimumSpanningTree(tspParent.mst);
tsp.mst.getConnections () .remove(singleConnection);
tsp.mst.setCost(tsp.mst.getCost() - singleConnection.getCost());
tsp.bestConnectionToMST = singleConnection;
return tsp.mst.getCost() + tsp.bestConnectionToMST.getCost();
}
}
// construction of new MST required
tsp.mst = new MinimumSpanningTree(tsp.remaining);
tsp.bestConnectionToMST = null;
double bestCost = Double.POSITIVE_INFINITY;
for (Connection connection : tsp.currentPlace.getConnections()) {
Place otherPlace = (connection.getPlacel() == tsp.currentPlace) ? connection.
getPlace2() : connection.getPlacel();
if ((tsp.remaining.contains(otherPlace)) && (connection.getCost() < bestCost)
) {
bestCost = connection.getCost();
tsp.bestConnectionToMST = connection;

}
}
double cost = tsp.mst.getCost();
if (tsp.bestConnectionToMST != null)

cost += bestCost;
return cost;
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}

s
setGFunction(new StateFunction() {
@Override
public double calculate(State state) {
TravelingSalesmanProblem tsp = (TravelingSalesmanProblem) state;
return (tsp.parent == null) ? 0.0 : (tsp.getParent()).getG() + tsp.route.get(tsp.

route.size() - 1).getCost();

I3

As regards the fields in our TravelingSalesmanProblem class, it contains: a static reference
to the map object, a collection of non-static fields describing the particular state, a minimum
spanning tree object meant for the heuristics calculation purposes, and a separate reference to the
best (cheapest) connection from the current place to some place within the MST.

On can notice that there is a certain redundancy in the description of the state, since we represent
the route as a list of succesive connections (List<Connection route) and simultaneously also as
a list of ids of visited places (List<Integer> routeAsIds). Moreover, we keep a sorted set
of remaining places (SortedSet<Place> remaining), which is also redundant, since such a set
could be always uniquely derived from the route and the set of all places (kept inside the map).
Nevertheless, such redundacy in terms of memory consumption is later compensated by speed
gains in operations like: descendants generations, construction of MST, or identification of a state
via toString() or hashCode () methods.

As regards the generation of descandants — the generateChildren() method — it boils down
to: copying the parent state, iterating over connections outgoing from the current place and
appending a new place to the route provided that this place has not been already visited. After
that, the reference to the current place is set to the new place.

As for the cost functions ¢ and 5, we implement both of them as anonymous functions and
attach them statically to the class via setGFunction(...) and setHFunction(...) respectively.
The g function is straightforward and boils down to adding up the cost of the last connection
to the g cost of the parent. The h function is a bit more complex. First of all we should remark
that the MST reference in a descendant state is null at the start, and the calculation of MST is
postponed until the first call to the getH() metho is made. Then, we check wether the MST of
the parrent can be fairly cheeply reused or if a new MST should be derived. In doing so, we simply
check whether the last place in the route so far (current place in our descendant) has only one
edge within the parent’s MST. In other words we need to know if there is no fork from that place
within the MST. If there is no such fork, we can reuse this MST and modify it only slightly i.e. the
single egde is deleted from the new MST and it (this edge) becomes the best connection from the
current state to the modified MST. Otherwise, if a fork exists, we rebuild the MST from the scratch.
The implementation of the MST related class (sac.examples.tsp.MinimumSpanningTree) applies
Kruskal’s algorithm (Kruskal, 1956) and is included in Appendix[6.5}

HHence, underneath it is also the first call to the hFuntion.calculate() method.
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Examples of small and easy TSPs

The following code example generates and solves an easy Euclidean TSP with n = 5 places
distributed randomly within a unit square.

Map map = new Map(5);
TravelingSalesmanProblem tsp = new TravelingSalesmanProblem(map);
System.out.println("TSP_.TO_.SOLVE: \n" + map);

GraphSearchAlgorithm algorithm = new AStar(tsp);
algorithm.execute();

System.out.println("CLOSED.STATES:." + algorithm.getClosedStatesCount());
System.out.println ("OPENLSTATES:." + algorithm.getOpenSet().size());

System.out.println ("DURATION_.TIME:." + algorithm.getDurationTime() + ".ms");
if (algorithm.getSolutions().isEmpty()) {
System.out.println("NO.SOLUTIONS_.FOUND. ") ;
System.out.println("BEST_.STATE_SO_FAR:.");
System.out.println(algorithm.getBestSoFar());
} else {
TravelingSalesmanProblem solution = (TravelingSalesmanProblem) algorithm.getSolutions().get
®;

System.out.println("SOLUTION:." + solution);
System.out.println("PATH_.COST.(LENGTH):." + solution.getG());

The program outputs the following result to the console and the graph searched is depicted in
Fig. In the figure, every graph state contains a visualization of the partial route travelled so
far (marked in black) and the minimum spanning tree (marked in gray) related to the calculation
of heuristics. It is possible to note that the algorithm reaches in fact two solutions, because in a
non-directed graph a reversal of an optimal route leads to an equivalent optimal route as well.

TSP TO SOLVE:

1: (0.12251284631678094, 0.380209913097437)
2: (0.5639280517556917, 0.5560186588425798)
3: (0.6089976670947047, 0.17022778070498457)
4: (0.7890152412835078, 0.9022516218739999)
5: (0.2753596011637117, 0.5962434229024552)
CLOSED STATES: 12

OPEN STATES: 12

DURATION TIME: 4 ms

SOLUTION: [1, 3, 2, 4, 5, 1]

PATH COST (LENGTH): 2.1937848431352442

In Fig. 3.6l we present three TSP examples for n = 5, n = 10, and n = 15. The figure shows the
console output of a TSP solving program and the resulting routes. Search graphs related to these
examples are shown on subsequent pages, in figures 3.9
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Figure 3.5: Graph searched by SaC using MST-based heuristics for a Euclidean Traveling Salesman
Problem with n = 5 places distributed randomly within a unit square.
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Example 1 (n = 10)

TSP TO SOLVE:

ONO UV WN

9:
10:

CLOSED STATES: 30

OPEN STATES: 107

DURATION TIME: 43 ms

SOLUTION: [1, 9, 7, 5, 6, 8, 3, 10, 4, 2, 1]

.

: (0.
(0.6967743393401367, 0
(0.6567692230822297, 0
(0.8377899934797072, 0.13271896685690432)
(0.8792651552573485, 0

0

(.

(0.9198623796845153, 0.5637433717172501)
(0.036877836919299245, 0.03690090923080769)

=)

©

12721669119887158, 0.37344395814939046)
121603630813373, 0.6769233524617521)
.6558920453521531)
.8073145753237446)

.27602108108406176)

5705158967610642, 0.10468983588670522)

.803098627387394, 0.9124602486409994)

PATH COST (LENGTH): 3.1485171705107526

Example 2 (n = 15)

TSP TO SOLVE:

NV WN

15:

: (0.
: (0.

(.
(0.
(.
(.
®
(.
(.

: (0.
: (0.
: (0.
: (0.
: (0.
: (0.
CLOSED
OPEN STATES: 1146

DURATION TIME: 200 ms

.977839796679355, 0.9712745046770875)

6465487963847636, 0.21821665354693065)
12410081933969885, 0.8205066551015285)
7636609394148224, 0.3769891636455803)
2196605421495409, 0.7210071301565283)
35501164239226757, 0.9028959080059216)
19409145502874914, 0.032570229427743125)

7073474430257418, 0.07126970719532189)
4076402270626023, 0.9546082439383254)
029324526390854255, 0.4126818021669526)
1794318696639896, 0.8393016210197272)
18437221955272642, 0.9521910807090714)

740701851836031, 0.7595720414974898)
20987682154810083, 0.9667661669912148)
5208660866302058, 0.047291493246816696)
STATES: 200

SOLUTION: [1, 8, 15, 6, 10, 4, 2, 11, 12, 14, 5, 9, 7, 13, 3, 1]
PATH COST (LENGTH): 3.4907876232208066

Example 3 (n = 20)

TSP TO SOLVE:

0N Vs WN

20:
CLOSED

o (0.
: (0.

(.
(.
(.
.
.
.
.

2 (0.
2 (0.
: (0.
H(]
: (0.
: (0.
: (0.
: (0.
: (0.
: (0.
(.

08186119552601445, 0.49089277702354817)
05155073744417993, 0.08268872589515641)
28852602463134314, 0.009126346941663699)
8064223640909227, 0.7637184456373667)
7628990893773238, 0.6979541317575202)
586002368788608, 0.6044459621574342)
8093879023036267, 0.13039611137729412)
17643467716269545, 0.004464542854964004)
4294707658409983, 0.805746750096812)
28973692559079467, 0.2680530377656897)
9846547483004421, 0.8696582199140886)
02288798827590166, 0.009918798528826045)
.9391576678180453, 0.2995144653344426)
31749251878166085, 0.09857385515517092)
3943812427703105, 0.21271979616530157)
9860929425082905, 0.7153770321657219)
8743121633859209, 0.8979076761069746)
32139489601926197, 0.87778415943177)
224308203366414, 0.01770912623336629)
9111172070899347, 0.9521047178429524)
STATES: 148

OPEN STATES: 1751

DURATION TIME: 305 ms

SOLUTION: [1, 18, 9, 6, 5, 4, 17, 20, 11, 16, 13, 7, 15, 10, 14, 3, 19, 8, 12, 2, 1]
PATH COST (LENGTH): 3.794077377734747

Figure 3.6: Several TSP examples solved by SaC.
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Figure 3.7: Solution and search graph for the TSP problem from example 1 in Fig. 3.6
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Figure 3.8: Solution and search graph for the TSP problem from example 2 in Fig. 3.6
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Figure 3.9: Solution and search graph for the TSP problem from example 3 in Fig. 3.6
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Simple statistics for random Euclidean TSPs

Examples from the previous subsection were fairly simple. In fact, we selected them out because
the A* algorithm generated quite small search graphs for them — the number of states present at
the stop moment (in both Open and Closed sets) was smaller than 2000 in all cases. These graphs
were convenient for us for the purpose of visualization.

In this subsection we would like to give the reader a feeling on the actual difficulty that
particular initial values of n create for the search algorithm. For that purpose we arranged a
batch experiment consisting of multiple random TSPs. 20 repetitions were done for each n =
5,10,15,20. The code below represents this experiment. Additionally, it demonstrates the usage
of sac.stats.Stats class, convenient for batch experiments of that type. Results produced by the
presented program are gathered in Table. 3.4

More information on how to register statistics and monitor search procedures within SaC can
be found in Chapter[5|

Stats stats = new Stats();
for (int n = 5; n <= 20; n += 5) {
for (int r = 0; r < 20; r++) {
Map map = new Map(n);
TravelingSalesmanProblem tsp = new TravelingSalesmanProblem(map);

GraphSearchAlgorithm algorithm = new AStar(tsp);
algorithm.execute();

stats.addEntries(algorithm, n, r);

}

for (int n = 5; n <= 20; n += 5) {

System.out.println(" =x*");

System.out.println("n.=." + n);

System.out.println("MEANLCLOSED_.STATES:." + stats.mean(StatsCategory.
GRAPH_SEARCH_CLOSED_STATES.toString(), n, null));

System.out.println ("MEANLOPEN.STATES:." + stats.mean(StatsCategory.GRAPH_SEARCH_OPEN_STATES.
toString (), n, null));

System.out.println ("MEANLDURATION_TIME:." + stats.mean(StatsCategory.
GRAPH_SEARCH_DURATION_TIME. toString(), n, null));

System.out.println ("MEANLPATH.G:." + stats.mean(StatsCategory.GRAPH_SEARCH_PATH_G.toString(),
n, null));

Table 3.4: Simple statistics observed in 20 repetitions for random Euclidean TSPs (within a unit
square).

mean mean mean mean
repetitions | closed states | open states | duration time | path cost
5 20 18.7 l6.4 3.1ms 1.98
10 20 194.4 7214 24.5 ms 2.79
15 20 3893.7 24756.0 472.6 ms 3.37
20 20 25643.9 247673.7 | 97423 ms 3.91
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TSP console solver

Along with the distribution of the SaC library comes a console solver dedicated for the Traveling
Salesman Problem. The solver can be accessed by the included run_tsp.bat file (or directly by
the sac.examples.tsp.ConsoleSolver class). A default execution triggered via

java -Xmx2048M -cp "sac-1.0.0.jar;jfreechart-1.0.14.jar;jcommon-1.0.17.jar" sac.examples.tsp.ConsoleSolver

(the line from the .bat file) generates a random TSP for n = 10 and produces the following output
to the screen with help information available:

TRAVELING SALESMAN PROBLEM (TSP) SOLVER

PARAMETERS :

-tsp - input path to text file (places in successive lines written as: x, y) with a TSP to be solved

-a - full class name of graph search algorithm to be used (deafault: sac.graph.AStar)

-tspImage - output path to .gif file representing the TSP to be solved)

-tspSolutionImage - output path to .gif file representing the solution of TSP)

-c - input path to .properties file with configuration settings for search process

-g - output path to .dot file in Graphviz format representing graph that was searched)

-gWithContent - true/false flag stating if points in Graphviz graph should be drawn with a content or no
PREPARING A RANDOM TSP

TSP TO SOLVE:

1: (0.23837959212004678, 0.42856952786747304)
2: (0.04856303446645194, 0.14510993730937916)
(0.8481119838802103, 0.8476036286011716)
(0.5134840439526505, 0.38036551734281576)
(0.8938906752066433, 0.45893894608984886)
(0.9912720715320988, 0.5512600244991797)
(0.3081039830474124, 0.49977790528024346)
(0.061756899494391115, 0.473908767794066)
9: (0.4568222308553671, 0.8739890958612715)
10: (0.9215007375728422, 0.42934196019090054)
ALGORITHM: sac.graph.AStar

SOLVING. ..

DURATION TIME: 110 ms.

CLOSED STATES: 222.

OPEN STATES: 717.

SOLUTION:

[1, 8, 2, 4, 5, 10, 6, 3, 9, 7, 1]

PATH COST (LENGTH): 2.8254791884954225

ALL DONE.

0N Vs W

A specific (non-random) TSP problem can be given as input by providing a text file via -tsp
parameter. In such a file the coordinates of places should be specified in successive lines with x
and y values separated by a comma. Note that the console solver rescales original coordinates to
tit the places in the unit square.

3.3.3 Sudoku

Sudoku is a number-placement puzzle. In the most common setup, the sudoku board is a 9 X 9
grid of cells with distinguished 9 subsquares inside, each being a 3 x 3 grid. Initially, the board is
partially filled with numbers. The goal of the solver is to fill in the empty cells in such a manner
that all rows, all columns, and all subsquares contain all the numbers from the set {1,2,...,9}. It
is commonly agreed that a well-posed initial sudoku should lead to a unique solution. Sudoku
can be regarded as a special case of latin squar with an additional constraint imposed on the
subsquares.
Fig. shows an example of the sudoku puzzle.

2Latin square is a n X n grid filled with n symbols. Each symbol must occur exactly once in each row and each
column.
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2 8§ 1 7 4 5 2 38 1 67 4 9

7 311 7 8 4/5 9 3|1 2 6
9 2|8 5 6 9 1|4 7 2|8 3 5

9 4 8 7 2 3 9|1 4 5|6 8 7

4 2 8 3] > |4 5 7|2 6 8|9 1 3
1 6 3 2 1 6 8/9 3 7|2 5 4
3 217 6 34 2|7 8 9|5 6 1
5|6 8 9 1 5|6 2 4(3 7 8

7 6 5 1 9 8 7 6|3 5 1|4 9 2

Figure 3.10: Example of sudoku puzzle —initial board shown on the left-hand-side and its solution
on the right-hand-side (numbers filled in to form a solution are marked in red).

Sudoku was popularized by a Japanese company Nikoli in late 1980s. Some sources (Shortz,
2005; Wikipedia, 2014) suggest that the puzzle was originally and anonymously proposed by
Howard Garns, a freelance puzzle designer from Indiana, and published first in 1979 in Dell
Magazines under the name Number Place.

A generalized sudoku can be defined as follows. Given is an initial 7% X n? grid of cells,
containing 1 subsquares (each of size n X ). The grid is partially filled with numbers. The goal is
to fill the missing cells in such a manner that all rows, all columns, and all subsquares contain all

the numbers from the set {1,2, ..., n2}.

Implementation of sudoku state

Below we show a sudoku implementation using SaC. The code is almost in its full, omitted are
import statements, and the toGraphvizLabel() method. The sudoku board is represented as a
two-dimensional array of bytes. The value of zero represents and empty cell to be filled in. The
subsquare side length 7 is denoted in the code by n, and the whole board side length 12 is denoted
by N. Each sudoku state ‘knows’ its number of empty cells (emptyCells). It also keeps some
auxiliary fields with information about: the sum of remainining possibilities over all cells, and
the cell with the minimum number of remaining possibilities (this cell is used later on to generate
descendants). The remaining possibilities for an (i, j) cell are the ones that remain after excluding
the numbers occuring in the i-th row, the j-th column, and the subsquare that (i, j) cell belongs to.

public class Sudoku extends GraphStateImpl {

protected static byte n;
protected static byte N; // n * n
protected byte[][] board = null;

protected int emptyCells; // number of empty cells

protected int sumRemainingPossibilities; // sum of remaining possibilities in all cells.

protected int minRemainingPossibilities; // minimum number of remaining possibilities in some
cell

protected int minI = -1; // row position of the cell with mimum number of possibilities
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protected int min) = -1; // column position of the cell with mimum number of possibilities
protected SortedSet<Byte> possibilities = null; // remaining possibilities in the ’minimum
cell’

public Sudoku(Sudoku parent) {

board = new byte[N][N];

emptyCells = parent.emptyCells;

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {

board[i][j] = parent.board[i]l[j];

}

possibilities = new TreeSet<Byte>();

}

public Sudoku(int n) {
Sudoku.n = (byte) n;
N = (byte) (n * n);
board = new byte[N][N];
emptyCells = N * N;
possibilities = new TreeSet<Byte>();

3

public Sudoku(int n, String sudokuAsCommaSeparatedString) {
Sudoku.n = (byte) n;
N = (byte) (n * n);
board = new byte[N][N];

emptyCells = N * N;

StringTokenizer tokenizer = new StringTokenizer (sudokuAsCommaSeparatedString, ",");
int z = 0;
while (tokenizer.hasMoreElements()) {
byte number = Byte.valueOf((String) tokenizer.nextElement());
int i = z / N;
int j =z % N;
board[i][j] = number;
if (number > 0) {

emptyCells--;
}
Z++;
}
possibilities = new TreeSet<Byte>();
}
@Override

public List<GraphState> generateChildren() {
List<GraphState> children = new LinkedList<GraphState>();
double theH = getH(); // call made in order to do pre-calculations for heuristics and to
// discover minI, min]
// (if not present so far)
if (minRemainingPossibilities == 0)
return children; // discrepancy or solution
if (theH > 0) {
for (byte possibility : possibilities) {
Sudoku child = new Sudoku(this);
child.board[minI][min]] = possibility;
if (child.isAdmissible()) {
child.emptyCells = emptyCells - 1;
child.setMoveName (" ("
children.add(child);

non

+ (minI + 1) + "," + (min] + 1) + "):=" + possibility);
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}
}
return children;

}

@Override

public boolean isSolution() {
return (emptyCells == 0);

}

@Override
public int hashCode() {
byte[] linearBoard = new byte[N * N];

for (int i = 0; i < N; i++)
System.arraycopy (board[i], ®, linearBoard, i * N, N);

return Arrays.hashCode(linearBoard);
}

@Override
public String toString() {
StringBuilder builder = new StringBuilder();
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
builder.append(board[i][j]1);
if (j <N - 1)
builder.append(",");
}
if (i <N - 1)
builder.append("\n");
}
return builder.toString(Q);

}

protected boolean isAdmissible() {
List<Byte> groupUnderCheck = new ArraylList<Byte>();

// checking each square
for (int k = 0; k < N; k++) {
int minI = n * (k % n);
int min) = n * (k / n);
for (int i = minI; i < minI + n; i++)
for (int j = minJ; j < min] + n; j++)
if (board[i][j] > ©)
groupUnderCheck.add(Byte.valueOf(board[i][j]1));

if (!isGroupAdmissible (groupUnderCheck))
return false;
groupUnderCheck.clear();
}

// checking each row
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
if (board[i][j] > ©)
groupUnderCheck.add(Byte.valueOf(board[i]l[j]1));
if (!isGroupAdmissible (groupUnderCheck))
return false;
groupUnderCheck.clear();
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}

// checking each column
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++) {
if (board[il[j] > ®)
groupUnderCheck.add(Byte.valueOf(board[i]l[j]1));
if (!isGroupAdmissible (groupUnderCheck))
return false;
groupUnderCheck.clear();
}

return true;
}

protected boolean isGroupAdmissible(List<Byte> group) {
if (group.size() == 0)
return true; // empty group is implied by all zeros in it
for (int i = 0; i < group.size() - 1; i++) {
byte tempByte = group.get(i).byteValue();
for (int j =i + 1; j < group.size(); j++) {
byte toBeCompared = group.get(j).byteValue();
if (tempByte == toBeCompared)
return false;
}
}
return true;
}

protected void precalculateForHeuristics() {
minRemainingPossibilities = Integer.MAX_VALUE;
sumRemainingPossibilities = 0;
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) {
if (board[i][j] > ©)

continue;
SortedSet<Byte> remaining = remainingPossibilities(i, j);
int remainingSize = remaining.size();

sumRemainingPossibilities += remainingSize;
if (remainingSize < minRemainingPossibilities) {
minRemainingPossibilities = remainingSize;

minl = i;

minl] = j;

possibilities = remaining;

if (minRemainingPossibilities == 0)
return;

3

private SortedSet<Byte> remainingPossibilities(int i, int j) {
SortedSet<Byte> remaining = new TreeSet<Byte>();
for (int k = 1; k <= N; k++)
remaining.add((byte) k);

// removing from remaining numbers existing in i-th row and j-th
for (int k = 0; k < N; k++) {

remaining.remove (board[i][k]);

remaining.remove (board[k][j]1);

column
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// removing number as a possibility from the square i, j belongs to

int iMin = (i / n) * n;
int iMax = iMin + n;
int jMin = (j / n) * n;
int jMax = jMin + n;

for (int k = iMin; k < iMax; k++)
for (int 1 = jMin; 1 < jMax; 1++)
remaining.remove (board[k][1]);

return remaining;

}

static {
setHFunction(new HFunctionSumRemainingPossibilities());

}

The implementation presented contains three constructors — a copying constructor, a construc-
tor of an empty board (populated with zeros), and a constructor from a comma separated string
with numbers. It also contains suitable routines like: hashCode(), toString(), isSolution(),
generateChildren().

As regards the generation of descendants, it is always carried out with respect to some cell
containing the minimum number of remaining possibilities. If there is more than one such
cell in the board, the most top-left one is used. Information about the ‘minimum cell” (its
position, the actual remaining possibilities, and their number) are precalculated in the private
precalculateForHeuristics() method.

In our implementation a sudoku can have at most n? descendants if all {1,2, ..., n?} remaining
possibilities are valid. We remark that our process of descendants generation is in fact a guessing
process. Although we do not introduce immediate conflicts (duplications of some number in a
row, a column, or a subsquare) by excluding the numbers present in the row, the column, and
the subsquare the chosen ‘minimum cell” belongs to, it is possible that such conflicts may occur
later. In other words we make the search procedure follow the paths for all guesses that seem
currently valid. We implement the isAdmissible() method to check if a sudoku is legal or
not. If there exist a duplication this method returns a false. Each potential descendant is first
checked using the isAdmissible () method before being added to the actual list of descendants.
Therefore, it is possible that a sudoku state (reached within the search procedure) may have as few
as zero descendants. This means that in fact we have reached a contradictory state and the search
algorithm shall abandon the current search path and move to another one by polling the next state
from the Open queue.

By default, our sudoku implementation is equipped with a heuristic function represented by
the class HFunctionSumRemainingPossibilities. It is attached by the setHFunction(...) static
call. This heuristics boils down to calculating the number of remaining possibilities in every cell
of the board and returning the sum. In other words, we say that a sudoku is closer to the goal state
the smaller that sum is. On the other hand, we shall show that it is also possible to successfully
use a different and trivial heuristic function — HFunctionEmptyCells — yielding the number of
empty cells in the board. In that case, we say a sudoku is closer to the goal state the fewer empty
cells it contains. We should mention that since sudoku is a placement puzzle we do not have to




NG W=

(o]

NG W=

o]

O OO UTk WM~

CHAPTER 3. SEARCHING GRAPHS 89

care about minimizing the path (the number of moves / manipulations leading to the solution). In
fact, from the very start we know what number of cells must be populated. From the perspective
of search algorithms, this means we do not have to take the travalled cost ¢ into account, and
this type of puzzles is typically well tackled by Best-first search algorithms or Depth-ﬁrst-searc
Moreover, we do not have to worry about the admissibility of the heuristics (since the ¢ summand
is neglected).

Below, we include the codes of the two heuristics described above.

public class HFunctionSumRemainingPossibilities extends StateFunction {

@Override
public double calculate(State state) {
Sudoku sudoku = (Sudoku) state;
sudoku.precalculateForHeuristics();
return ((sudoku.minRemainingPossibilities == 0) && (sudoku.emptyCells > 0)) ? Double.
POSITIVE_INFINITY sudoku.sumRemainingPossibilities;

public class HFunctionEmptyCells extends StateFunction {

@Override
public double calculate(State state) {
Sudoku sudoku = (Sudoku) state;
sudoku.precalculateForHeuristics();
return ((sudoku.minRemainingPossibilities == 0) && (sudoku.emptyCells > 0)) ? Double.
POSITIVE_INFINITY sudoku.emptyCells;

Example of a ‘not so easy’ sudoku

We start with an example of a seemingly easy sudoku. It contains 54 givens and therefore merely
27 empty cells (typical sudokus have fever than 30 givens). In particular, the top three rows in the
example are already filled in completely. Yet, our SaC solver (based on a Best-first search algorithm)
follows several stray leads before finding the correct path leading to the solution. Our run took
70ms. Beneath, we present the source code and the program output.

Sudoku sudoku = new Sudoku(3,
"8,5,4,2,1,9,7,6,3," +
"3,9,7,8,6,5,4,2,1," +
"2,6,1,4,7,3,9,8,5," +
"0,8,0,0,0,0,0,9,0," +
"0,4,0,5,3,8,0,7,0," +
"0,3,0,0,0,0,0,5,0," +
"9,2,6,3,8,4,5,1,7," +
"5,0,3,7,0,0,0,4,8," +

74y

~

13 A* or Dijsktra’s algorithm would in this case degenerate in a sense to Breadth-first search and would only slow down
the performance.
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"4,7,8,0,0,1,0,0,0");
System.out.println ("SUDOKU_.TO_SOLVE:\n" + sudoku);

GraphSearchAlgorithm algorithm = new BestFirstSearch(sudoku);
algorithm.execute();

System.out.println("SOLUTION: \n" + algorithm.getSolutions().get(0));
System.out.println("——");

System.out.println("CLOSED.STATES:." + algorithm.getClosedStatesCount() + ".");
System.out.println ("OPENLSTATES:." + algorithm.getOpenSet().size() + ".");
System.out.println ("DURATION.TIME." + algorithm.getDurationTime() + ".ms.");

SUDOKU TO SOLVE:
8,5,4,2,1,9,7,6,3
3,9,7,8,6,5,4,2,1
2,6,1,4,7,3,9,8,5
9,8,0,0,0,0,0,9,0
9,4,9,5,3,8,0,7,0
9,3,9,0,0,0,0,5,0
9,2,6,3,8,4,5,1,7
5,9,3,7,0,0,0,4,8
4,7,8,9,0,1,0,0,0
SOLUTION:
8,5,4,2,1,9,7,6,3
3,9,7,8,6,5,4,2,1
2,6,1,4,7,3,9,8,5
7,8,5,1,2,6,3,9,4
6,4,9,5,3,8,1,7,2
1,3,2,9,4,7,8,5,6
9,2,6,3,8,4,5,1,7
5,1,3,7,9,2,6,4,8
4,7,8,6,5,1,2,3,9

CLOSED STATES: 54.
OPEN STATES: 5.
DURATION TIME 70 ms.

Fig.[3.1Tshows the graph searched for the sudoku from our first example. The heuristic function
used in the search was “sum of remaining possibilities” (HFunctionSumRemainingPossibilities
class). As usual, we encourage the reader to zoom in the figure to see more details. One can note
that the first two passes were driven by forced moves — there exsisted cells where exactly one
remaining possibility was left. After that, the search procedure reached a state where the cell (4, 3)
had two remaining possibilities {2, 5} and it was the ‘minimum cell’. Two descendant states with
each of these two possibilities inserted to the board were generated and added to the Open queue.
Interestingly, the descendant related to the first possibility was superficially more attractive since
its heuristic score was h = 57, as opposed to i = 63 for the second possibility. In other words,
placing the 2 in the cell (4,3) (first possibility) eliminated more remaining possibilities from the
whole board than if the 5 was placed (second possibility). Therefore, the algorithm followed the
first possibility in the first order. This later turned out to be leading to a contradiction (h = o). As
one can note from the figure, there were more such forking points where the guesswork driven by
our heuristics lead the procedure astray.

How would the second heuristic function — “empty cells” (HFunctionEmptyCells) — cope
with the same example? Below, we first show the code excerpt demonstrating how one can




Qs W=

CHAPTER 3. SEARCHING GRAPHS 91

switch to another heuristics (the rest of the code is as before), then we show the program output.
Obviously, the procedure reaches the same solution but one can note that now a few more states
are visited. We remark that this fact should not be treated as a proof that the “empty cell” heuristics
is worse in general. Later, we shall show a counter example.

GraphSearchAlgorithm algorithm = new BestFirstSearch(sudoku);
Sudoku.setHFunction(new HFunctionEmptyCells());
algorithm.execute();

SUDOKU TO SOLVE:
8,5,4,2,1,9,7,6,3
3,9,7,8,6,5,4,2,1
2,6,1,4,7,3,9,8,5
9,8,9,0,0,0,0,9,0
9,4,9,5,3,8,0,7,0
9,3,9,9,0,0,0,5,0
9,2,6,3,8,4,5,1,7
5,9,3,7,0,0,0,4,8
4,7,8,0,0,1,0,0,0
SOLUTION
8,5,4,2,1,9,7,6,3
3,9,7,8,6,5,4,2,1
2,6,1,4,7,3,9,8,5
7,8,5,1,2,6,3,9,4
6,4,9,5,3,8,1,7,2
1,3,2,9,4,7,8,5,6
9,2,6,3,8,4,5,1,7
5,1,3,7,9,2,6,4,8
4,7,8,6,5,1,2,3,9

CLOSED STATES: 65.
OPEN STATES: 6.
DURATION TIME 70 ms.
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Easy sudoku

Let us now switch to a truly easy sudoku that one might have come accross in a newspaper. It has
36 givens, so fewer than in the previous example, but the search procedure leads directly (along
one path) to the solution — there are no false leads. Below, we show the output of the related
program and the graph search in Fig. using “sum of remaining possibilities” as heuristics.
Not to consume too much space the figure was rotated by 90° because it represents a single path.

SUDOKU TO SOLVE:
9,2,9,8,1,0,7,4,0
7,0,0,0,0,3,1,0,0
9,9,9,9,9,2,8,0,5
9,0,9,0,4,0,0,8,7
4,9,9,2,9,8,0,0,3
1,6,9,9,3,0,2,0,0
3,9,2,7,0,0,0,6,0
9,9,5,6,0,0,0,0,8
9,7,6,0,5,1,0,9,0
SOLUTION:
5,2,3,8,1,6,7,4,9
7,8,4,5,9,3,1,2,6
6,9,1,4,7,2,8,3,5
2,3,9,1,4,5,6,8,7
4,5,7,2,6,8,9,1,3
1,6,8,9,3,7,2,5,4
3,4,2,7,8,9,5,6,1
9,1,5,6,2,4,3,7,8
8,7,6,3,5,1,4,9,2

CLOSED STATES: 46.
OPEN STATES: 0.
DURATION TIME 63 ms.

(EEEHNEEE{OEEE-OEEEEEEEEEFE S EEEOEEEEEEJEEEEEE N EEEOEEE-TEEE-OEEEEEEOMEEEEEE-EEE - EEE-EEE-EEE- R EEEOEEE-EEEEEEEEE 0 EEE - EEE-JOEEEEEEHEEEMEEEHEEEHEEEHIEER

Figure 3.12: Graph searched by SaC using “sum of remaining possibilities” heuristics for an easy
sudoku.

Now, we again try the second heuristics (“empty cells”) on the same initial sudoku. Below
is the program output. As on can see the number of states residing in Closed and Open sets at
the stoppage moment are exactly the same. Therefore, both heuristics perfom equally for this
particular example.

SOLUTION:

5,2,3,8,1,6,7,4,9
7,8,4,5,9,3,1,2,6
6,9,1,4,7,2,8,3,5
2,3,9,1,4,5,6,8,7
4,5,7,2,6,8,9,1,3
1,6,8,9,3,7,2,5,4
3,4,2,7,8,9,5,6,1
9,1,5,6,2,4,3,7,8
8,7,6,3,5,1,4,9,2

10,
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CLOSED STATES: 46.
OPEN STATES: 0.
DURATION TIME 62 ms.

‘Qassim Hamza’ sudoku

The following sudoku, known as ‘Qassim Hamza’, is regarded as a very hard for human. There are
22 givens arranged diagonally in subsquares to make things harder. The solving process requires
several guesses to be made. Beneath, we show the outputs of two runs of our solver, respectively
for “sum of remaining possibilitiess” and “empty cells” heuristics. Both executions last less than
a second, but this time the trivial “empty cells” heuristics turns out to be cheaper. Moreover, the
difference in the number of visited and generated states is significant. Fig. demonstrates the
smaller of the two graphs searched (this time we display the nodes with no contents).

SUDOKU TO SOLVE:

covocomno oo
cwooroooo
Vcounocoooo
coeNvoOwne N
cxooweon o
coomoo Lo
comnocoo oo x
coocooroowo
VoowooR oo

HEURISTICS: sac.examples.sudoku.HFunctionSumRemainingPossibilities.
SOLUTION :
3,2,9,

125457510,

7,1,6,8
8,4,5,2
3,2,9,7
,5,7,2,9,
,9,3,8,5,
4,6,1,3
2,9,4,6
6,8,7,1
1,5,3,4

NBR RN WO
0O NNDRFEO WU
N UlwNO 0 O

O N VTN O B =
O WO W B TN

34525 9,%,

CLOSED STATES: 5267.

OPEN STATES: 452.

DURATION TIME 593 ms.

HEURISTICS: sac.examples.sudoku.HFunctionEmptyCells.
SOLUTION:

3,2,9,

125457,

7,1,6
8,4,5
3,2,9
,5,7,2,
,9,3,8,
4,6,1
2,9,4
6,8,7
1,5,3

O N VTN O B =
O W00 W TN

B RO W U O NN
0O NN RFEOWUm
N UlwNO 00 O

NBD RN W o

CLOSED STATES: 525.
OPEN STATES: 40.
DURATION TIME 171 ms.
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Figure 3.13: Graph searched by SaC using “empty cells” heuristics for the ‘Qassim Hamza” sudoku.
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Minimum sudoku

The next puzzle is an example of a so called minimum sudoku. Minimum sudokus are such initial
arrangements which lead to a unique (single) solution and the number of givens is minimal. Up
to recently it was not known what is the size of minimum sudokus for the 9 X 9 board. In 2012 a
group of researches from Dublin University College proved that 17 is the siz In other words
all 9 x 9 sudokus with 16 or fewer givens lead to more than one solution. For strictness we also
remark that obviously not all sudokus with 17 givens are necessarily minimal.

Below, we show a particular minimum sudoku and results of two executions of our SaC solver
using two heuristics. This time the results are comparable (with a slight advantage of the ‘sum of
remaining possibilities” function).

SUDOKU TO SOLVE:

nwNoocoso oo
coocowowo o
coococooomo
cooNwNooo oo
cowoooo e
cocooo @ N
coonvo oo
xocoocoo oo wn
covonoo e

HEURISTICS: sac.examples.sudoku.HFunctionSumRemainingPossibilities.
SOLUTION:
9,4,6,

32575055,

30,%,23,0,

1,8,2,7
5,9,7,4
6,4,3,8
3,1,8,5
,2,5,4,9,
7,6,9,2
8,3,5,6
9,2,6,1
4,7,1,3

30,9,2,0,

VI N = 00O i N W
o0 N UV W WO N =
O Wb = NN Vv
0B NwWERE OO NU
N UVTO B ONFEOW

CLOSED STATES: 5348.
OPEN STATES: 717.
DURATION TIME 530 ms.

HEURISTICS: sac.examples.sudoku.HFunctionEmptyCells.
SOLUTION:
9,4,6,

325750254,

»0,%,2,0,7,

1,8,2,7,5
5,9,7,4,2
6,4,3,8,9
,3,1,8,5,6
,2,5,4,9,1,
7,6,9,2,3
8,3,5,6,7
9,2,6,1,4
4,7,1,3,8

30,2,2,0,/7,

VI N = 00O i N W
OO N VT WO N =
O Wb = NN UV
N UVTO BN RFEOW

CLOSED STATES: 5430.
OPEN STATES: 723.
DURATION TIME 561 ms.

14Gee: https://en.wikipedia.org/wiki/Mathematics_of_Sudoku
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Suppose we want to check that the given sudoku is in fact minimal. Up to now our search
procedure was stopped at the moment it reached the first goal state. From the status of the Open
set at the stoppage moment one can see there are still potential leads to be followed. Let us force
SaC to pursue those leads. The code excerpt below shows how this can be achieved.

GraphSearchConfigurator configurator = new GraphSearchConfigurator();
configurator.setWantedNumberOfSolutions (Integer.MAX_VALUE);

GraphSearchAlgorithm algorithm = new BestFirstSearch(sudoku, configurator);
algorithm.execute();

System.out.println ("FOUND_SOLUTIONS:." + algorithm.getSolutions().size() + ".");
System.out.println ("CLOSED_.STATES:." + algorithm.getClosedStatesCount() + ".");
System.out.println ("OPENLSTATES:." + algorithm.getOpenSet().size() + ".");
System.out.println ("DURATION_.TIME." + algorithm.getDurationTime() + ".ms.");

The crucial point is to explicitly instantiate a GraphSearchConfigurator object and to tell it
we want to find all solutiond™| via setWantedNumberOfSolutions (Integer.MAX_VALUE). In fact,
setWantedNumberOfSolutions(2) would work too if we were only interested in checking the
uniqueness of the solution.

The execution of our program leads now to the output shown below. It confirms the fact our
particular sudoku was minimal — the number of found solutions is one and we can see that the
Open set is now emptified (all valid leads are exhausted).

FOUND SOLUTIONS: I.

CLOSED STATES: 9730.

OPEN STATES: 0.
DURATION TIME 764 ms.

Now, suppose we want to play a bit and we remove one given number (the left most given
in the first row) from our initial board. Again, we run our solver and we tell it (by means of
a configurator) to find the first three solutions. Here is the full code, slightly modified, and the
program output.

d

’

~

~
[eENell e lie el Mo N Nl -

@3,

=
(%]

Sudoku sudoku = n

(=]
(=]

G NOODO OO
~
~

’

~

~

~
~

~

~
~

~
~

’

~

+F o+ o+ o+

’

o
5
0
0
0
0
0
0
0
8

OO OO WO
~

,8,0");
"SUDOKU_TO_.SOLVE: \n" + sudoku);

DO OO OO O WO
ZOOO\]OOOOO
B OoOoOwWooOoOOoOWOVwoOm
~~ ~

[=NeloloNoNoNoNo)
~ ~

SoOONMNODOOONC

=N

System.out.pri

GraphSearchConfigurator configurator = new GraphSearchConfigurator();
configurator.setWantedNumberOfSolutions (3);

GraphSearchAlgorithm algorithm = new BestFirstSearch(sudoku, configurator);
algorithm.execute();

151f RAM allows and if the set of all solutions is smaller than Integer.MAX_VALUE.
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algorithm.getDurationTime () +
Y

algorithm.getSolutions()) {

System.out.println("SOLUTION." + (++i) + "

System.out.println(solution);

System.out.println("——");

SUDOKU TO SOLVE:

System.out.println ("OPENLSTATES:." + algorithm.getOpenSet().size() + "

System.out.println("CLOSED.STATES:." + algorithm.getClosedStatesCount() + "
System.out.println ("DURATION_TIME." +

CHAPTER 3. SEARCHING GRAPHS
System.out.println ("FOUND.SOLUTIONS:." + algorithm.getSolutions().size() + "
for (GraphState solution

int i = 0;

18
19
20
21
22
23
24
25
26
27
28
29
30

@0@@8@9@@

m

5@@0@0@@8
7®®®®2®®®
0@@00@00@
090@00300
000007000
@800@@0@0
@1@93@@@»@
@@@4@@0-/15

)
=
S

T
jen)
=
o
%]

a
=
=}
o
=

DURATION TIME 109 ms.

CLOSED STATES: 202.
OPEN STATES: 36.

142783956

539164728

768592431
371829564

A”U8562w47219
HtoOonmaNNO—O M
= N
m923418675

142783956

539164728

768592413
371829564

22%4&5L387
m 8 5 6 3 4 7 2 9 l
T485276139
DA Namunwsa
BNt S0 E N

SOLUTION 3:

13278495

54916372

7 6 &.5 9 2 4 1
2 9 4 &,5 L,3 8
8 5 6 3 4 7 2 9
4852_/613

61793584
92341867
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5,2,9,1,7,4,3,8,6

We now know that our removal of one given caused that at least three solutions exist. How
many solutions are there in total now? We run the code again changing setWantedNumberOfSolutions(3)
to setWantedNumberOfSolutions(Integer.MAX_VALUE). Below we show the program output. For
shortness we do not display the particular solutions, just their multiplicity.

FOUND SOLUTIONS: 1414.

CLOSED STATES: 90594.

OPEN STATES: 0.
DURATION TIME 3619 ms.

The output may be a bit surprising — there are now 1414 solutions in total and our search algorithm
had to visit 90 594 states before stopping. The duration time was now noticeable — 3 619 ms.
All 4 x 4 sudokus

We use the ideas from the previous example to discover all distinct sudokus for the 4 x 4 board.
It is sufficient to create an empty 4 X 4 sudoku and to ask SaC for all the solutions. The program
code and its output are as follows.

Sudoku sudoku = new Sudoku(2);
System.out.println ("SUDOKU_.TO.SOLVE: \n" + sudoku);

GraphSearchConfigurator configurator = new GraphSearchConfigurator();
configurator.setWantedNumberOfSolutions (Integer.MAX_VALUE);

GraphSearchAlgorithm algorithm = new BestFirstSearch(sudoku, configurator);
algorithm.execute();

System.out.println ("FOUND_SOLUTIONS:." + algorithm.getSolutions().size() + ".");
System.out.println ("CLOSED_.STATES:." + algorithm.getClosedStatesCount() + ".");
System.out.println ("OPENLSTATES:." + algorithm.getOpenSet().size() + ".");
System.out.println ("DURATION_.TIME." + algorithm.getDurationTime() + ".ms.");

SUDOKU TO SOLVE:

FOUND SOLUTIONS: 288.
CLOSED STATES: 2273.
OPEN STATES: 0.

DURATION TIME 188 ms.

It turns out there are 288 different 4 X 4 sudokus. Fig. illustrates the graph involved in that
search.

One might be tempted to do the same thing for a traditional 9 X 9 sudoku. Yet, the trial must
be abandoned, as it has been demonstrated combinatorically that the number of different sudoku
puzzles is approximately 6.7 - 10?!. Thus, it is impossible to collect them within RAM memory.
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Figure 3.14: Graph searched by SaC in order to discover all 4 X 4 sudokus.

Sudoku console solver

Along with the distribution of the SaC library comes a console solver dedicated for the sudoku
puzzle. The solver can be accessed by the included run_sudoku.bat file (or directly by the
sac.examples.sudoku.ConsoleSolver class). A default execution triggered via

java -Xmx2048M -cp "sac-1.0.0.jar;jfreechart-1.0.14.jar;jcommon-1.0.17.jar" sac.examples.sudoku.ConsoleSolver

(the line from the .bat file) produces the following output to the screen with help information and
a default ‘Qassim Hamza’ sudoku solved:

SUDOKU SOLVER

PARAMETERS :

-s - input path to text file (one line, comma-separated) with sudoku to be solved (possible sudokus: 4x4, 9x9, 16x16, etc.)
-h - full class name of heuristic function be used (deafault: sac.examples.sudoku.HFunctionSumRemainingPossibilities)

-c - input path to .properties file with configuration settings for search process

-g - output path to .dot file in Graphviz format representing graph that was searched

-gWithContent - true/false flag stating if points in Graphviz graph should be drawn with a content or no

DEFAULT SUDOKU ’QASSIM HAMZA’.

SUDOKU TO SOLVE:22

9,9,0,7,0,0,8,0,0

9,0,0,0,4,0,0,3,0

9,9,0,0,0,9,0,0,1

6,9,0,5,0,0,0,0,0

9,1,0,0,3,0,0,4,0

9,9,5,0,0,1,0,0,7

5,0,0,2,0,0,6,0,0

9,3,0,0,8,0,0,9,0

9,0,7,0,0,0,0,0,2

HEURISTICS: sac.examples.sudoku.HFunctionSumRemainingPossibilities.
SOLVING. ..

DURATION TIME 655 ms.
CLOSED STATES: 5267.
OPEN STATES: 452.

FOUND 1 SOLUTION(S):

SOLUTION 1
3,2,9,7,1,6,8,5,4
1,7,6,8,4,5,2,3,9
4,5,8,3,2,9,7,6,1
6,4,3,5,7,2,9,1,8
7,1,2,9,3,8,5,4,6
8,9,5,4,6,1,3,2,7
5,8,1,2,9,4,6,7,3
2,3,4,6,8,7,1,9,5
9,6,7,1,5,3,4,8,2
ALL DONE.

As an additional example we would like to show here a 16 X 16 sudoku solved by the console
solver. We prepared the string representing such a sudoku in a text file d: /sudokul16.txt and we
passed the file path to the console solver via -s parameter. The following command:

java -Xmx2048M -cp "sac-1.0.0.jar;jfreechart-1.0.14.jar;jcommon-1.0.17.jar" sac.examples.sudoku.ConsoleSolver -s d:/sudokul6.txt

produced the ouput beneath to the console. As one can note the search procedure took over 90s
to finish.
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SUDOKU SOLVER

PARAMETERS:

_s -
_h -
—c -
-g -

input path to text file (one line, comma-separated) with sudoku to be solved (possible sudokus: 4x4, 9x9, 16x16, etc.)
full class name of heuristic function be used (deafault: sac.examples.sudoku.HFunctionSumRemainingPossibilities)

input path to .properties file with configuration settings for search process

output path to .dot file in Graphviz format representing graph that was searched

-gWithContent - true/false flag stating if points in Graphviz graph should be drawn with a content or no

SUDOKU TO SOLVE:

7,0,0,0,0,5,1,0,3,1
12,8,
9,15,

1,0,0,0,0,0,
9,0,0,15,14,0,4,0,9,0,11,0,1
10,2,13,0,0,0,0,7,0,5,8

1,9,9,0,9,0,0,0,0,0,0,0,0,0,0,0

,16
0,
0,

noewea

,13,
10,1,

9,9,1,9,9,2,9,0,15,90,0,0,5,0,0,1

15,0, 1

14,0,

9,0,12,0,9,0,9,8,9,1,10, ,

9,0,9,0,0,0,0,0,9,15,0,0,9,8,0,0

,6,4,0,0,10,0,0,7,0,14,0,0,0,11,
5
0

9,3,0,0,0,0,0,0,7,14
16,0,0,0,0,0,0,5,6,0
1

9,12,9,3,9,0,10,9,0,8,0,0,
,0,15,0,0,0,0,13,0,4,0,14,0,
,0,0,14,15,13,90,10,8,0,0,4,0,
,0,6,0,0,0,0,0,0,1,0,0,0,0
8,9,3,9,10,0,0,0,11,6,0,0,15,0
15,9,90,9,5,16,14,0,4,0,0,6,0,0

HEURISTICS: sac.examples.sudoku.HFunctionSumRemainingPossibilities.
SOLVING. ..

DURATION TIME 90870 ms.

CLOSED STATES: 333585.

OPEN

STATES: 33769.

FOUND 1 SOLUTION(S):

SOLUTION 1:

7,14,
12,8,
4,15,

6,9,8,5,1,12,3,11,2,16,4,10,13,15
13,5,7,15,14,3,4,6,9,10,11,1,16,2
10,2,13,16,11,6,1,7,12,5,8,9,3,14

1,3,11,16,2,9,4,10,8,14,13,15,7,5,6,12

6,10,
15,5,
14,4,
2,11,
13,7,

1,13,14,2,3,9,15,4,16,12,5,7,8,11
9,3,10,13,16,11,2,8,7,14,6,12,1,4
16,8,1,12,7,15,11,5,6,3,10,2,9,13
12,7,5,4,6,8,9,1,10,13,16,15,14,3
5,1,12,6,2,14,16,15,3,11,9,8,4,10

8,6,4,15,16,10,13,5,7,12,14,9,2,3,11,1
11,16,14,12,4,3,9,7,10,2,1,8,15,13,5,6
3,9,2,10,15,11,8,1,6,13,5,4,12,14,7,16
16,12,3,6,11,14,15,13,5,10,8,7,1,4,2,9
9,2,7,14,6,8,12,4,13,16,15,1,3,11,10,5

5,13,
10,1,

8,4,3,1,10,2,12,9,11,6,14,16,15,7
15,11,9,7,5,16,14,3,4,2,13,6,12,8

ALL DONE.
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Chapter 4

Searching game trees

This chapter is devoted to the part of SaC library responsible for searching game trees. We begin the
chapter with a section reminding several well known game search algorithms. The reader familiar
with these algorithms can move over to subsequent sections. The second section discusses SaC’s
API related to game tree searching. The last one presents two game-related examples in which we
have applied SaC for demonstration, namely: checkers and Nim.

4.1 Algorithms

Algorithms for game trees are based on the concept of minimax. Historically, this concept is due
to von Neumann who formulated and proved the minimax theorem (von Neumann, 1928; von
Neumann and Morgenstern, 1944). The theorem itselft has a bit different and more general setting
than typically can be met in algorithms meant for games like for example chess. The theorem
pertains to zero-sum two-person games, covers both cases where players make simultaneous or
alternate moves, and implies the existance of an optimal, so called, mixed strategy for each player. If
both players apply their optimal strategies the game will be driven to a saddle point (a.k.a. minimax
point) resulting in a game value (minimax value) that none of the players can improve by changing
his strategy. Putting it more simply, the concept of minimax can be explained as a decision rule
which tells a player to minimize the maximum possible payoff for the other player.

SaC provides three well known algorithms dedicated for games where players make alternate
moves. The algorithms are recursive and it is convenient to express each of them in a form of two
twin procedures that call one another interchangeably. In subsequent three sections we present
these algorithms. We try to give them in a compact form, limiting ourselves to the most important
backbone. In later sections, we describe some possible refinements and tricks that the algorithms
can be augmented with to boost up their performance.

4.1.1 Min-Max

The subsequent pseudocode shows the simplest algorithm for game trees — the Min-Max algo-
rithm. It demonstrates the basic mechanics underlying game tree searching. In the code s denotes

102
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the current state (for which the current recursive call is made), 4 denotes the depth of s, and D is
the maximum depth limit.

Alg. 8 Min-Max
1: procedure MMEVALUATEMAXSTATE(S, d, D)

2: if IsTErRMINAL(S, d, D) then return h(s) > h(s) — heuristic evaluation of position
3: U= —00
4: generate descandants {t} of s
5: forall f do
6: w :=MMEVALUATEMINSTATE(E, d + %, D)
7: if s is the root state then memorize w as the score for s — t move
8: v := max{v, w}
9: return v
10: procedure MMEvALUATEMINSTATE(S, d, D)
11: if IsTErRMINAL(S, d, D) then return h(s) > h(s) — heuristic evaluation of position
12: U=
13: generate descandants {t} of s
14: for all t do
15: w :=MMEvVALUATEMAXSTATE(t, d + %, D)
16: if s is the root state then memorize w as the score for s — f move
17: v := min{ov, w}
18: return v

The outermost call of the recursion should be made with respect to an initial state from which
we want to start the analysis, in particular this can be the initial position of the game, and that
state is treated as the root of game tree.

In lines 7 and 16 the algorithm memorizes a score for some move. In an actual implementation
such scores are typically memorized in a data structure that resides in the global scope outside the
recursion (for example this could be a hash map).

We distinguished the condition checking if given state is a terminal as a separate method
IsTERMINAL. It can be regarded as an additional routine method. We do not want to define it here
explicitly as it may depend on the rules of the game. Most commonly though, in IsTERMINAL one
has to check if either: maximum depth has been reached i.e. d = D; or s is a win state, i.e. h(s) = +oo;
or s is a non-win but terminal state due to some special rule, for example a stalemate or a perpetual
check in chess.

We should remark that in some situations it may be reasonable to pursue consequences of
a state deeper although it is a terminal according to the maximum depth reached (d = D). For
example, in chess or checkers when a series of captures by both players is involved, one should
analyze the series to the very end and return its final evaluation. An algorithmic gadget for that
purpose, called Quiescence, is described in further sections.

As regards the computational complexity, it is easy to note that it is exponential with respect to
the imposed depth limit D — the seach horizon. If the given game has a constant branching factor
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b (or if it is possible to estimate that factor to be b on avarage) then the computational complexity
of Min-Max is of O(bP) order. In that sense the algorithm can be treated as an exhaustive search
up to the imposed horizon. It does not discard any subtrees.

4.1.2 Alpha-beta pruning

There are several people regarded as independent and almost simultaneous discoverers of the
alpha-beta pruning algorithm (a.k.a. alpha-beta cut-offs) around late 1950s and early 1960s. In par-
ticular, the discoverers or contributors were: Daniel J. Edwards, Allen Newell, Hebert A. Simon,
John McCarthy, Arthur Samuel, Alexander Brudno; see e.g. (Edwards and Hart, 1963; Brudno,
1963; Newell and Simon, 1976). Later, Knuth and Moore (1975) refined the algorithm and gave its
detailed analysis. Pearl (1982) proved its optimality.

The pseudocode of the a-f pruning algorithm is presented below.

Alg. 9 Alpha-beta pruning

1: procedure ALPHABETAEVALUATEMAXSTATE(S, 4, D, «, fB)

2: if ISTERMINAL(S, d, D) then return /(s) > h(s) — heuristic evaluation of position
3 generate descandants {t} of s
4 forall t do
5 v :=ALPHABETAEVALUATEMINSTATE(f, d + %, D, a, )
6: if s is the root state then memorize v as the score for s — t move
7 a := max{a, v}
8 if a > § then return o > cut off — no further child t will be checked
9 return a
10: procedure ALPHABETAEVALUATEMAXSTATE(S, d, D, a, f)
11: if ISTERMINAL(S, d, D) then return /(s) > h(s) — heuristic evaluation of position
12: generate descandants {t} of s
13: forall t do
14: v :=ALPHABETAEVALUATEMAXSTATE(t, d + %, D, a, )
15: if s is the root state then memorize v as the score for s — t move
16: B := min{p, v}
17: if « > p then return 8 > cut off — no further child ¢ will be checked
18: return f8

Alpha-beta pruning belongs to the class of “branch and bound” algorithms. It works by
tracking two bounds on the game value along the recursion: a lower bound a and an upper bound
B. At any given point of the recursion one can understand «a as the guaranteed payoff for the
maximizing player and f as the guaranteed payoff for the minimizing player. The outermost call
of the recursion is made with the settings @ = —co and = oo, i.e. the most pessimistic values for
the maximizing and the minimizing player respectively.

The legal situation for the bounds is that they remain satisfying the @ < f inequality. Clearly,
a > B is a contradiction. For example, a maximizing player cannot be guaranteed with a payoff of
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5, while the minimizing player is simultaneously guaranteed a payoff of —2. Therefore, if at some
stage of tree analysis one comes across a state for which the initial condition to run the subrecursion
is @ > B, then, it means there is no point to do so because the subtree rooted by that state will
not affect the game value. All such subtrees can be discarded. Note that the equality o = § is
not a contradiction, but it also means that neither player can improve his score within a given
subtree. In other words, entering subtrees with a >  would not be an effect of optimal behaviour
of either player. On the other hand, one must understand that a-$ is an exact algorithm, not an
approximation. Its results are identical with results of Min-Max. It means that even though we do
not analyze some subtrees we do not miss anything relevant in the game. If an actual game being
played entered in its course of actions a discarded subtree that would mean one of the players
made a mistake and the opponent can only gain from that — he can improve or sustain his result,
not deteriorate it.

It can be shown that an optimistic complexity of the alpha-beta pruning is O(b'/?P). It arises
when the ordering of children nodes is optimal, meaning that the best moves are always analyzed
in first order, which allows for early cut-offs. The pessimistic complexity is O(b”) — the same as
for Min-Max. With random ordering of moves one obtains an average complexity of O(b%/4P)

It is also worth mentioning that the shown pseudocode represents the alpha-beta pruning
algorithm in the so called fail-soft version. It means that outcomes returned from particular
recursion calls do not have to fall into the starting [a, f] interval the call was initially made with.
There also exist the fail-hard version, in which each outcome must be bounded to the initial [a, f]
intervalll The difference between the two versions does not affect neither the final result of the
outermost call nor the collection of memorized move scores. One can check that even if some
subrecursion returns and outcome outside the initial [, f] interval, then, at the resursive stage
one level up, this outcome will be ignored because it does not improve the suitable « or  payoff.
On the other hand the fail-soft version is important because it helps to construct more advanced
algorithms (like Scout or MTD-f) that are based on the notion of so called zero windows. We discuss
that concept in the next section.

4.1.3 Scout
The main idea behind the Scout algorithm is driven from the following Knuth-Moore theorem.

Theorem 1 (Knuth and Moore, 1975, “theorem about a-f window”) Let v* denote the true, exact game
value returned by the Min-Max procedure executed with respect to some state. Let v denote the outcome of
a fail-soft alpha-beta pruning procedure executed for that state and with a search window defined by o and
B numbers imposed arbitrarily. Then, the following three cases are possible.

I.a<v<f=>0v=0
2. v<a=>0v" <0,

3. pLo=>0<L70".

n the fail-hard version, lines 8 and 17 would return: § and a respectively.
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The meaning of the theorem for the design of new search algorithm is the following. We may
try to guess a more narrow a-f window than in the traditional pruning procedure. Note that the
more narrow the window is the more cutoffs are likely to be produced within the recursion. If the
outcome value v, being the consequence of our guess, falls inside the (a, f) interval then we are
lucky, because v is equal to the true game value v*, and we can experience a computational gain (if
more cutoffs occur). On the other hand if the outcome falls outside the interval, then one obtains
a lower or an upper bound on true game value. Now, two cases are possible: either we have to
repeat the execution with a wider window (and we experience a computational loss), or we can
make use of the bound (and we experience a gain again). For example, if the maximizing player is
guaranteed with a payoff a and we obtained an outcome v < a, then, despite the fact that v is not
an exact game value, we do not have to repeat the computations because v upperbounds v*, and
the computations (if repeated) would not improve the a.

Historically, the first one to study this idea was Pearl (1980). He postulated that one can
more cheaply test whether a payoff can be improved. He introduced two recursive procedures
test(...) and eval(...), where the first one returned a boolean value stating if an improvement
was possible, while the other calculated the exact game value if needed.

The idea was then refined by Reinefeld (1983) who introduced the concept of zero search windows
(a.k.a. null windows or scout windows). If the payoffs in a game are integer numbers then a zero
window is the one satisfying the condition

a+1=p (4.1)

We first give some initial definitions and remarks that help to understand the Scout algorithm.
Then, we demonstrate the actual pseudocode (Alg. [10).

1. We shall say that an imposed a-f window succeeded if the value v returned by tha fail-soft
procedure satisfies: a < v < . This implies that the true game value v* equals v.

2. We shall say that an imposed a-f window failed low if the value v returned by tha fail-soft
procedure satisfies: v < a. This implies that v is an upper bound on the true game value, i.e.:
v* <.

3. We shall say that an imposed a-f window failed high if the value v returned by tha fail-soft
procedure satisfies: § < v. This implies that v is a lower bound on the true game value, i.e.:
v <.

4. A zero window (with a + 1 = ) must fail either low or high.

5. In the algorithm, only the first descendant of every state is analyzed with a full a-f window,
the second and further descendants are analyzed with zero windows, i.e. a-(a+1) or (—1)-8,
respectively for the states of type MAX and MIN.

6. If a zero window, imposed for a descendant of a MAX state, fails low then we do not care —
the payoff of the maximizing player could not have been improved within that descendant’s
subtree. This usually carries a computational gain because more cutoffs are likely to occur
with a zero window imposed.
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7.

10.

11.

If a zero window, imposed for a descendant of a MAX state, fails high then we have to repeat
the search with respect to that descendant with a wider window: v-, to obtain an exact value
for the subtree. The repetition carries a computational loss, but note that the new window
v-p is still more narrow than a full initial a-f window.

The above two remarks are symmetrically opposite for the MIN states.

The algorithm contains a condition checking if the current state is two half-moves away from
the maximum depth or deeper (D —d < 2-1/2). If so, the repetition of search is not needed
despite a fail-situation because it can be shown the algorithm works correctly at those depths.

Experimental studies, in particular from (Reinefeld, 1983), indicate that computational gains
consequencing from zero windows and thus more frequent cutoffs are typically greater than
computational losses consequencing from search repetitions.

Reinefeld (1983) experimented with random games imposing branching factors within
[20,60] (similar to chess) and depths of {4,5} half-moves. He experienced that his Scout
algorithm visited about 20% less of tree terminals than in the case of a traditional alpha-beta
pruning.



CHAPTER 4. SEARCHING GAME TREES 108

Alg. 10 Scout

1: procedure ScouTEVALUATEMAXSTATE(S, d, D, a, f)

2:

10:
11:

12:
13:

14

15:

16:
17:
18:
19:
20:
21:

22:
23:
24

25:
26:

if ISTERMINAL(S, d, D) then return /(s) > h(s) — heuristic evaluation of position
b:=p
generate descandants {t} of s
for all t do
v :=ScoUuTEVALUATEMINSTATE(E, d + %, D, a,Db)
if t is not the first descendantand D —d > 2-1/2 and b < v then > failing high
v :=ScoUTEVALUATEMINSTATE(E, d + %, D, v, p)
if s is the root state then memorize v as the score for s — f move
a := max{a, v}
if « > § then return o > cut off — no further child t will be checked
b=a+1 > forcing a zero window
return o
: procedure SCOUTEVALUATEMINSTATE(S, 4, D, a, f)
if ISTERMINAL(S, d, D) then return /(s) > h(s) — heuristic evaluation of position
a:=a
generate descandants {t} of s
for all t do
v :=ScouTEVALUATEMAXSTATE(E, d + %, D, a, p)
if t is not the first descendantand D —d > 2-1/2 and v < a then > failing low
v :=ScoUTEVALUATEMAXSTATE(t, d + %, D, a,v)
if s is the root state then memorize v as the score for s — t move
B :== min{p, v}
if o > § then return > cut off — no further child t will be checked
a:=p-1 > forcing a zero window
return
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4.2 API

4.2.1 Game state abstraction

In SaC’s API for searching games, the main ‘actor’ is the sac.graph.GameState interface being
an extension of the sac.State discussed earlier in Chapter 2| Below, we present the code listing
for the sac.graph.GameState interface and then some excerpts from its default implementation
— sac.graph.GameStateImpl. For full code of the implementation the reader is addressed to

Appendix

package sac.game;
import java.util.List;
import sac.State;
public interface GameState extends State {
public static final double H_SMALLEST_INFINITY = 0.5 * Double.MAX_VALUE;

@Override

public GameState getParent();

@Override

public List<GameState> getChildren();
@Override

public List<GameState> getPath();
@Override

public List<GameState> generateChildren();

public boolean isMaximizingTurnNow();

public void setMaximizingTurnNow(boolean maximizingTurnNow) ;

public boolean isWinTerminal();

public boolean isNonWinTerminal();

public List<String> getMovesAlongPrincipalVariation();

public boolean isQuiet();

public boolean isVisited();

public void setVisited(boolean visited);

public boolean isReadFromTranspositionTable();

public void setReadFromTranspositionTable(boolean readFromTranspositionTable);

The first thing to note is that the GameState interface reformulates the signatures of four
basic methods related to the parent — children binding and path tracking. The difference (of
cosmetic nature) is in the types returned, which now become GameState or List<GameState>, as
the resulting objects should be treated as game states (rather than general states).

Apart from the above, there are several new elements in the interface (with respect to its
ancestor sac.State):

- aconstantH_SMALLEST_INFINITY storing the smallest value of the heuristic function (position
evaluation) that already represents a win for a player — all values larger than the constant
also represent wins, but achieved faster (at smaller depths),

- a pair of methods to check or set whose turn it is now — isMaximizingTurnNow(),
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setMaximizingTurnNow(...),
- amethod designed to indicate whether the current state is a win terminal state —isWinTerminal (),

- a method designed to indicate whether the current state is a terminal but non-win state
due to some special rule of the game (e.g. perpetual check or a stalemate in chess) —
isNonWinTerminal (),

- a method returning the list of move names along the principal variation from the current
state downwards the tree — getMovesAlongPrincipalVariation(),

- a method designed to indicate whether the current state is a so called quie state —
isQuiet(Q),

- a pair of methods to check or set whether the given state was actually visited during the
search procedure; it may be so that a state was generated but in fact not visited due to a cutoff
— isVisited(), setVisited(...),

- a pair of methods to check or set whether the evaluation for given state was read from the
transposition table — isReadFromTranspositionTable(),
setReadFromTranspositionTable(...).

The last two pairs of methods are not recommended to be called explicitly by the user, they are
meant for internal purposes of SaC’s APIL.
Below, we show some excerpts from the default game state implementation in SaC.

public abstract class GameStateImpl extends StateImpl implements GameState {

protected boolean maximizingTurnNow = true;

protected List<String> movesAlongPrincipalVariation = null;
protected boolean visited = false;

protected boolean readFromTranspositionTable = false;

@Override
public final boolean isMaximizingTurnNow() {
return maximizingTurnNow;

3

@Override
public final void setMaximizingTurnNow(boolean maximizingTurnNow) {
this.maximizingTurnNow = maximizingTurnNow;

3

@Override
public boolean isQuiet() {
return true; // default implementation

2E.g. in chess or checkers typically a state is regarded as quiet if no immediate captures are possible. If a state is not
quiet then it is advised it should be analyzed further (to have a good evaluation of its consequences) even though it
may be a state at the maximum depth of deeper.
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}

@Override
public final List<String> getMovesAlongPrincipalVariation() {
return movesAlongPrincipalVariation;

}

@Override
public boolean isNonWinTerminal() {
return false;

}

@Override
public final boolean isWinTerminal() {

return Math.abs(getH()) >= H_SMALLEST_INFINITY;
}

4.2.2 General (abstract) game search algorithm

In this section we discuss SaC'’s internal mechanisms related to the general game searching pro-
cedure. This procedure is represented by an abstract class: sac.game.GameSearchAlgorithm.
Obviously, the end user of SaC library does not have to be aware of core-level intricacies. Instead,
in practice he can limit himself to instantiating a specific search algorithm (e.g.: new MinMax(),
new AlphaBetaPruning(...) or new Scout(...)) and running it for his particular game state.
Therefore, we recommend the reading of subsequent contents only to readers really interested in
low level details of SaC, perhaps the readers intending to extend the library in the future with new
algorithms or data structures.

The listing below demonstrates the most important parts of the GameSearchAlgorithm class.
For clarity, some less interesting parts have been skipped. The full code is available in the Appendix
The class is designed to work as a general and common (model) procedure for searching games
and provides a set of helper methods that the specific algorithms — the subclassess — can rely on.

package sac.game;

public abstract class GameSearchAlgorithm extends SearchAlgorithm {

protected GameState initial = null;
protected GameState current = null;
protected Map<String, Double> movesScores = null;

protected TranspositionTable transpositionTable = null;
protected RefutationTable refutationTable = null;

protected GameSearchConfigurator configurator = null;

protected int closedCount = 0; // number of closed states (= number of calls of methods
evaluateMaxState(), evaluateMinState) since last reset().

protected double depthReached = 0.0; // maximum depth that was reached in the search (owing
to quiescence) since last reset().
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protected boolean stopForced = false; // boolean flag stating if stop was forced (e.g. from
an outer thread)

public GameSearchAlgorithm(GameState initial, GameSearchConfigurator configurator) {

}
@Override
public final void execute() {
reset();
startTime = System.currentTimeMillis();
doExecute();
endTime = System.currentTimeMillis();
}

protected void doExecute() {
Double gameValue = null;
if (initial.isMaximizingTurnNow())
gameValue = evaluateMaxState(initial, Double.NEGATIVE_INFINITY, Double.
POSITIVE_INFINITY, 0.0, configurator.getDepthLimit());
else
gameValue = evaluateMinState(initial, Double.NEGATIVE_INFINITY, Double.
POSITIVE_INFINITY, 0.0, configurator.getDepthLimit());
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate(initial, gameValue, Double.NEGATIVE_INFINITY, Double.
POSITIVE_INFINITY);
current = null;

3

protected final Double evaluateMaxState(GameState gameState, double alpha, double beta,
double depth, double depthLimit) {
// time limit check

if ((stopForced) || (configurator.getTimeLimit() < Long.MAX_VALUE)) {
long currentTime = System.currentTimeMillis();
if (currentTime - startTime > configurator.getTimeLimit()) {

endTime = System.currentTimeMillis();
return null;
}
}
closedCount++;
current = gameState;
gameState.setVisited(true);
return doEvaluateMaxState(gameState, alpha, beta, depth, depthLimit);
}

protected final Double evaluateMinState(GameState gameState, double alpha, double beta,
double depth, double depthLimit) {
// time limit check

if ((stopForced) || (configurator.getTimeLimit() < Long.MAX_VALUE)) {
long currentTime = System.currentTimeMillis();
if (currentTime - startTime > configurator.getTimeLimit()) {

endTime = System.currentTimeMillis();
return null;
}

}
closedCount++;
current = gameState;
gameState.setVisited(true);
return doEvaluateMinState(gameState, alpha, beta, depth, depthLimit);
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73 public abstract Double doEvaluateMaxState(GameState gameState, double alpha, double beta,
double depth, double depthLimit);

74

75 public abstract Double doEvaluateMinState(GameState gameState, double alpha, double beta,
double depth, double depthLimit);

76

77 protected void reset() {

78

79 }

80

81 public Map<String, Double> getMovesScores() {

82 return movesScores;

83 }

84

85 public final String getFirstBestMove() {

86

87 }

88

89 public final List<String> getBestMoves() {

90

91 }

92

93 ... // getters, setters

94

95 protected final List<GameState> generateChildrenWrapper (GameState parent) {

96 List<GameState> children = parent.generateChildren();

97 for (GameState child : children) {

98 child.setParent (parent);

99 child.setDepth(parent.getDepth() + 0.5);

100 if (configurator.isParentsMemorizingChildren())

101 parent.getChildren().add(child);

102 recalculateHIfLarge(child);

103 }

104 return children;

105 }

106

107 protected final static void recalculateHIfLarge(GameState state) {

108 double h = state.getH(Q);

109 if (Math.abs(h) > GameState.MAX_H_VALUE) {

110 h = Math.signum(h) * GameState.MAX_H_VALUE * (1.0 + 1.0 / state.getDepth());

111 state.setH(h);

112 }

113 }

114

115 public final boolean isGameStateTerminal (GameState gameState, double depth, double depthLimit
) {

116 depthReached = Math.max(depthReached, depth);

117 if ((gameState.isWinTerminal()) || (gameState.isNonWinTerminal()))

118 return true;

119 if (depth >= depthLimit)

120 return (configurator.isQuiescenceOn()) ? gameState.isQuiet() : true;

121 return false;

122 }

123

124 public final static boolean isExactGameValue(double childValue, double alpha, double beta) {

125 return ((alpha < childValue) && (childValue < beta)) || ((childValue == Double.

NEGATIVE_INFINITY) && (alpha == Double.NEGATIVE_INFINITY))
126 || ((childValue == Double.POSITIVE_INFINITY) && (beta == Double.POSITIVE_INFINITY
D)
127 }
128
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129 public final static void updateMovesAlongPrincipalVariation(GameState parent, GameState child
) {

130 List<String> movesAlongPrincipalVariation = parent.getMovesAlongPrincipalVariation();

131 movesAlongPrincipalVariation.clear();

132 movesAlongPrincipalVariation.add(child.getMoveName());

133 movesAlongPrincipalVariation.addAll(child.getMovesAlongPrincipalVariation());

134 }

135

136 public final void forceStop() {

137 stopForced = true;

138 }

139 |}

The main functional goal of a GameSearchAlgorithm object (regardless of its actual type) is to
assign numeric scores to available moves in the current game position. The method exposed to the
user for that purpose is the execute () method. Once it is finished, the move scores are memorized
in a protected field: Map<String, Double> movesScores. It is a map type data structure storing
(key, value) pairs, where the key (String) represents the name of a move and the value (Double)
represents the heuristic evaluation for the move. Once the game tree analysis is finished the
move scores are accessible to the user by one of the following methods: getMovesScores(),
getFirstBestMove(), getBestMoves(). The first one is the most general getter returning all the
scores. The second method returns only one name of a move which is the best or belongs to the
group of several best moves (when equal highest scores occur). The third method returns a list of
all best moves (again, when equal scores occur). It is worth to remind that in order for the scores
map to be popoulated, the user must not forget to impose names on the descendant states, via the
setMoveName(. ..) method, while they are being generated inside the generateChildren(). Both
these methods come from the more general sac.State interface.

The next elements to note in the GameSearchAlgorithm class are references to transposition and
refutation tables. These structures are discussed in detail in later sections, but it can be explained
now, in short, that they allow for a quicker search either by avoiding multiple analysis of the
same subtrees reached by different paths (transposition table), or by encouraging more cutoffs
(refutation table).

As mentioned before the main operational method of the GameSearchAlgorithm class is the
execute(). Underneath, the method calls a hierarchy of wrapping submethods, namely: it
first calls the doExecute(), which in turn calls a suitable wrapper evaluateMaxState(...) or
evaluateMinState(...) depending on whose turn it is now, then these wrappers call the actual
evaluation methods — doEvaluateMaxState(...) or doEvaluateMinState(...). The wrapping
mechanism allows to suitably handle the following elements:

e resetting initial state and some data structures before a new analysis of the tree,
e time measurements — execution and an early stoppage under time control,

e checking if an outer stop on the procedure was forced,

e counting and flagging the visited states.

One cannote that the mostlow-level methods doEvaluateMaxState(...) and doEvaluateMinState(...)
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are left as abstract and their implementations are supposed to be filled in by the specific search
algorithms — sublcasses of the GameSearchAlgorithm class.

We now comment on a few auxiliary methods of the GameSearchAlgorithm class that are used
within search procedures.

The generateChildreniirapper(...) isamethod designed to be called from within the imple-
mentations of doEvaluateMaxState(...) or doEvaluateMinState(...) methods. That wrapper
is meant to handle some operations accompanying the generation of descendants. Firstly, the
wrapper invokes the generateChildren() call back method on the parent state. The implemen-
tation of that method is supposed to be provided by the user. Then, the wrapper iterates over the
created descendants and for each of them it updates the depth and parent—child binding informa-
tion. Finally, for each descendants its heuristic evaluation is updated, if it represents a win state,
via the recalculateHIfLarge(...) method. The details of this operation are discussed in the
next subsection.

The isGameStateTerminal(...) helper returns a boolean stating whether one of the following
events occurred: the maximum depth was reached and the given state is quiet, the given state is a
win terminal, the given state is a non-win terminal i.e. a terminal implied by some special rule of
the game (e.g. perpetual check in chess).

The isExactGameValue(...) helper should be considered in the light of the Knuth-Moore
theorem. The method returns the flag true if the tested game value falls inside the a- window.
Infinities are also suitably handled in the method. The method is useful in two places. Firstly, it is
a condition when an actual algorithm is about to memorize a score for a move. If a game value is
not exact, but rather a bound, then the algorithm should not memorize it as a score. Secondly, a
similar condition occurs when a transposition table considers a state and its score to be stored.

The updateMovesAlongPrincipalVariation(...) forces an update of the principal variation,
stored as a list of move names, for given parent object. It is done by using such a descen-
dant of the parent that have just led to an improvement of the game value (or bound). This
method is called in suitable places by MinMax, AlphaBetaBruning, and Scout classes inside their
doEvaluateMaxState(...) and doEvaluateMinState(...) methods when the aforementioned
improvement takes place.

4.2.3 Recalculation of heuristics for win states

TherecalculateHIfLarge(...) method mapssuitably theinfinities (Double.POSITIVE_INFINITY
or Double.NEGATIVE_INFINITY) to large values, taking into account the depth at which the win-
ning position was achieved. This allows to “differntiate infinities” in case several winning lines are
possible. The algorithm assigns the highest score to the move which leads to a win in the fewest
moves.

Let h denote the heuristic evaluation assigned originally to a given state by the user and let d
be the depth of that state (d € {0.0,0.5,1.0,1.5,...}). Also, let h, denote the H_SMALLEST_INFINITY
constant (equal to 8.988465674311579E307) from the GameState class, i.e. the smallest value
representing a win. Then, provided that & > h, the recalculation of the evaluation is carried out
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according to the following formula:
h:=sgn(h) - heo - (1 +1/4d). 4.2)

The table 4.1| shows some recalculation results in the Double type (ignoring the sign) as the
depth parameter grows. As one can see the successive values approach H_SMALLEST_INFINITY as
d — oo. It is worth to comment that the recalculation value for 4 = 0.0 was not reported in the

| d | recalculated unsigned h ‘

0.5 | Double.POSITIVE_INFINITY
1.0 | 1.7976931348623157E308
1.5 | 1.498077612385263E308
2.0 | 1.3482698511467367E308
2.5 ] 1.2583851944036209E308
3.0 | 1.1984620899082103E308

Table 4.1: Initial values of recalculated evaluations for win states depending on their depths.

table because such case does not occur in the typical usage of SaC — the analysis of a game tree
is typically ordered for some state while the game is still ongoing, not finished. Therefore, the
earliest moment a win can be reached is for d = 0.5. Yet, it can be checked programmistically that
for d = 0.0 the formula responds with Double.POSITIVE_INFINITY, so with the same result
as ford = 0.5.

The recalculation mechanism is a facilitation for the user (the programmer of some game). He
does not have to worry about ‘differentiating infinities” himself. His heuristic evaluation function,

attached via the setHFunction(...) functionality, is required only to return Double.POSITIVE_INFINITY

or Double.NEGATIVE_INFINITY in case of a win and regardless of the depth. Those values shall
later be recalculated automatically on the fly by SaC.
4.2.4 Specific game search algorithms

In this section presented are code excerpts for the three game search algorithms included in SaC.
Let us start with the MinMax class.

package sac.game;
import java.util.List;
public class MinMax extends GameSearchAlgorithm {
public MinMax(GameState initial, GameSearchConfigurator configurator) {
super (initial, configurator);

3

public MinMax(GameState initial) {
super (initial, null);
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}

public MinMax() {
super (null, null);
}

@Override
public Double doEvaluateMaxState(GameState gameState, double alpha, double beta,
, double depthLimit) {
if (isGameStateTerminal (gameState, depth, depthLimit)) {
if (configurator.isTranspositionTableOn())

117

double depth

transpositionTable.putOrUpdate (gameState, gameState.getH(), alpha, beta);

return gameState.getH(Q);
}
List<GameState> children = generateChildrenWrapper (gameState);
double value = Double.NEGATIVE_INFINITY;
for (GameState child : children) {
Double childValue = null;
if (configurator.isTranspositionTableOn())
childValue = transpositionTable.get(child, alpha, beta);
if (childValue == null) {
childValue = (child.isMaximizingTurnNow()) ? evaluateMaxState(child,
depth + 0.5, depthLimit) : evaluateMinState(child, alpha,
beta, depth + 0.5, depthLimit);
if (childvalue == null)
return null;
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate(child, childValue, alpha, beta);
}
if (childValue > value) {
value = childValue;
updateMovesAlongPrincipalVariation(gameState, child);
}
if (depth == 0.0)
movesScores.put(child.getMoveName (), childValue);

}

return value;
}
@Override

public Double doEvaluateMinState(GameState gameState, double alpha, double beta,
, double depthLimit) {
if (isGameStateTerminal (gameState, depth, depthLimit)) {
if (configurator.isTranspositionTableOn())

alpha, beta,

double depth

transpositionTable.putOrUpdate (gameState, gameState.getH(), alpha, beta);

return gameState.getH(Q);
}
List<GameState> children = generateChildrenWrapper (gameState);
double value = Double.POSITIVE_INFINITY;
for (GameState child : children) {
Double childValue = null;
if (configurator.isTranspositionTableOn())
childValue = transpositionTable.get(child, alpha, beta);
if (childValue == null) {
childValue = (child.isMaximizingTurnNow()) ? evaluateMaxState(child,
depth + 0.5, depthLimit) : evaluateMinState(child, alpha,
beta, depth + 0.5, depthLimit);
if (childvalue == null)
return null;
if (configurator.isTranspositionTableOn())

alpha, beta,
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transpositionTable.putOrUpdate(child, childValue, alpha, beta);

}
if (childValue < value) {

value = childValue;

updateMovesAlongPrincipalVariation(gameState, child);
}
if (depth == 0.0)

movesScores.put(child.getMoveName (), childValue);

}

return value;

}

Apart from constructors there are only two methods —the implementations of doEvaluateMaxState(...)

and doEvaluateMinState(...), that were undefined (abstract) in the general GameSearchAlgorithm
class. As one can see these implementations correspond well to the algorithmic pseudocode
of Min-Max presented before. A notable deviation can be seen in the way the subrecur-
sions are being called, namely, the doEvaluateMaxState(...) does not necessarily have to
call the ‘opposite” wrapper evaluateMinState(...) but may again call a wrapper to itself —
evaluateMaxState(...) (and vice-versa). It all depends on whose turn it is to play and this
condition is checked on every child state — child.isMaximizingTurnNow(). What is the point
of this generalization? When can players deviate from moves being made interchangeably all
the time? A good example, to answer that, are card games. Think of any card game where a
player is allowed either to take a trick e.g. by playing a high card or to duck it (refuse it) by
playing a small card, whatever he thinks is better for him. If he decides to take the trick then it
is (commonly) his turn again to play on. This means that a sequence of two max operations (or
two min operations) occurs. The algorithmic pseudocode |8 does not include such a scenario just
for the sake of notational conciseness. Therefore, it is worth to remember that it is programmer’s
responsibility to suitably change the turn flags when the children states are being generated —
inside the generateChildren(. ..) implementation.

A certain extra in the presented code is also the usage of the transposition table. The usage
is conditional, i.e. it takes place only when the suitable configuration option is on, and accounts
for two cases: (1) a game value for a child already exists in the transposition table, so it can be
read from there without executing the search recursion, (2) a game value for a child was just
calculated and should be stored or updated in the transposition table. More technical details about
the transposition table are described in the subsequent section It can also be noticed that
alpha and beta variables, passed as arguments, are never used. These variables are foreseen for
the more advanced algorithms, which we now move to.

Let us have a look at the AlphaBetaPruning class.

package sac.game;
import java.util.List;
public class AlphaBetaPruning extends GameSearchAlgorithm {

public AlphaBetaPruning(GameState initial, GameSearchConfigurator configurator) {
super (initial, configurator);
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}

public AlphaBetaPruning(GameState initial) {
super (initial, null);
}

public AlphaBetaPruning() {
super (null, null);

}

@Override
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public Double doEvaluateMaxState(GameState gameState, double alpha, double beta, double depth

, double depthLimit) {
if (isGameStateTerminal (gameState, depth, depthLimit)) {
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate(gameState, gameState.getH(Q),
return gameState.getH(Q);
}
List<GameState> children = generateChildrenWrapper (gameState);
if (configurator.isRefutationTableOn())
refutationTable.reorder (gameState, children);
for (GameState child : children) {
Double childValue = null;
if (configurator.isTranspositionTableOn())
childValue = transpositionTable.get(child, alpha, beta);
if (childValue == null) {

alpha, beta);

childvalue = (child.isMaximizingTurnNow()) ? evaluateMaxState(child, alpha, beta,
depth + 0.5, depthLimit) : evaluateMinState(child, alpha,

beta, depth + 0.5, depthLimit);
if (childvalue == null)
return null;
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate(child, childValue, alpha,
}
if ((depth == 0.0) && (isExactGameValue(childValue, alpha, beta)
movesScores.put(child.getMoveName (), childValue);
if (childvValue > alpha) {
alpha = childValue;
updateMovesAlongPrincipalVariation(gameState, child);
if (configurator.isRefutationTableOn())
refutationTable.put(gameState, child);
}
if (alpha >= beta)
return alpha;

}

return alpha;
}
@Override

beta);

»

public Double doEvaluateMinState(GameState gameState, double alpha, double beta, double depth

, double depthLimit) {

if (isGameStateTerminal (gameState, depth, depthLimit)) {
if (configurator.isTranspositionTableOn())

transpositionTable.putOrUpdate (gameState, gameState.getH(Q),

return gameState.getH(Q);

}

List<GameState> children = generateChildrenWrapper (gameState);

if (configurator.isRefutationTableOn())
refutationTable.reorder (gameState, children);

for (GameState child : children) {

alpha, beta);
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Double childValue = null;
if (configurator.isTranspositionTableOn())
childValue = transpositionTable.get(child, alpha, beta);
if (childValue == null) {
childValue = (child.isMaximizingTurnNow()) ? evaluateMaxState(child, alpha, beta,
depth + 0.5, depthLimit) : evaluateMinState(child, alpha,
beta, depth + 0.5, depthLimit);
if (childVvalue == null)
return null;
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate(child, childValue, alpha, beta);
}
if ((depth == 0.0) && (isExactGameValue(childValue, alpha, beta)))
movesScores.put(child.getMoveName (), childValue);
if (childvValue < beta) {
beta = childValue;
updateMovesAlongPrincipalVariation(gameState, child);
if (configurator.isRefutationTableOn())
refutationTable.put(gameState, child);
}
if (alpha >= beta)
return beta;

}

return beta;

Again, the code contains the same elements — three constructors and the implementations of
doEvaluateMaxState(...) and doEvaluateMinState(...) methods. This time, the alpha and
beta variables are in use. They are updated if an evaluation returned by a child state leads to an
improvement of the pay off for given player. In particular, the last ‘if” statement — if (alpha
>= beta) {...} —leads to a cut off of a subtree, in compliance with the algorithm[9} One more
new element is a possible usage of the so called refutation table. More details about it are given in
section[d.2.5] Hereby, it suffices to say that the refutation table may potentially reorder the children
states — refutationTable.reorder(...) — in such a way that the most promising child is
considered as the first one in the loop, and by that it may lead to an early cut off. On the other
hand, each time an actual cut off is met (alpha >= beta) the information about the parent—child
pair causing that cut off is stored in the refutation table for a plausible usage in the future. It is also
worth to explain that an application of the refutation table was not possible in the previous MinMax
class because the MinMax algorithm always analyzes all the children states, it cannot induce a cut
off.

Let us now move to the Scout class — representing the most advanced algorithm for game
trees within SaC.

package sac.game;
import java.util.List;
public class Scout extends GameSearchAlgorithm {

public Scout(GameState initial, GameSearchConfigurator configurator) {
super (initial, configurator);
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}

public Scout(GameState initial) {
super (initial, null);
}

public Scout() {
super (null, null);

}

@Override
public Double doEvaluateMaxState(GameState gameState, double alpha, double beta, double depth
, double depthLimit) {
if (isGameStateTerminal (gameState, depth, depthLimit)) {
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate (gameState, gameState.getH(), alpha, beta);
return gameState.getH(Q);
}
List<GameState> children = generateChildrenWrapper (gameState);
if (configurator.isRefutationTableOn())
refutationTable.reorder (gameState, children);
double b = beta;
for (int i = 0; i < children.size(); i++) {
GameState child = children.get(i);
Double childValue = null;
boolean researchNeeded = false;
double bound = alpha;
if (configurator.isTranspositionTableOn())
childValue = transpositionTable.get(child, alpha, b);
if (childValue == null) {
if (child.isMaximizingTurnNow()) {
// scout search with zero window
childValue = evaluateMaxState(child, alpha, b, depth + 0.5, depthLimit);
if (childvalue == null)
return null; // time limit reached
// checking if window fails high, if so, research with broader window
if ((i > 0) && (b <= childValue) && (childValue < beta) && ((configurator.
isQuiescenceOn()) || (depthLimit - depth > 0.5))) {
researchNeeded = true;
bound = childValue;
childValue = evaluateMaxState(child, bound, beta, depth + 0.5, depthLimit
D
if (childvValue == null)
return null; // time limit reached
}
} else {
// scout search with zero window
childvalue = evaluateMinState(child, alpha, b, depth + 0.5, depthLimit);
if (childValue == null)
return null; // time limit reached
// checking if window fails high, if so, research with broader window
if (4 > 0) && (b <= childValue) && (childValue < beta) && ((configurator.
isQuiescenceOn()) || (depthLimit - depth > 0.5))) {
researchNeeded = true;
bound = childValue;
childValue = evaluateMinState(child, bound, beta, depth + 0.5, depthLimit
);
if (childValue == null)
return null; // time limit reached
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}
if (configurator.isTranspositionTableOn()) {
if (!researchNeeded)
transpositionTable.putOrUpdate(child, childValue, alpha, b);
else
transpositionTable.putOrUpdate(child, childValue, bound, beta);
}
if ((depth == 0.0) && (isExactGameValue(childValue, alpha, beta)))
movesScores.put(child.getMoveName (), childValue);
if (childvValue > alpha) {
alpha = childvValue;
updateMovesAlongPrincipalVariation(gameState, child);
if (configurator.isRefutationTableOn())
refutationTable.put(gameState, child);
}
if (alpha >= beta)
return alpha;
if (Math.abs(alpha) < GameState.H_SMALLEST_INFINITY)
b = alpha + 1.0;

}

return alpha;
}
@Override

public Double doEvaluateMinState(GameState gameState, double alpha, double beta, double depth
, double depthLimit) {
if (isGameStateTerminal (gameState, depth, depthLimit)) {
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate (gameState, gameState.getH(), alpha, beta);
return gameState.getH(Q);
}
List<GameState> children = generateChildrenWrapper (gameState);
if (configurator.isRefutationTableOn())
refutationTable.reorder (gameState, children);
double a = alpha;
for (int i = 0; i < children.size(); i++) {
GameState child = children.get(i);
Double childValue = null;
boolean researchNeeded = false;
double bound = beta;
if (configurator.isTranspositionTableOn())
childvValue = transpositionTable.get(child, a, beta);
if (childValue == null) {
if (child.isMaximizingTurnNow()) {
// scout search with zero window
childValue = evaluateMaxState(child, a, beta, depth + 0.5, depthLimit);
if (childvalue == null)
return null; // time limit reached
// checking if window fails low, if so, research with broader window
if ((i > 0) && (childValue <= a) && (alpha < childValue) && ((configurator.
isQuiescenceOn()) || (depthLimit - depth > 0.5))) {
researchNeeded = true;
bound = childValue;
childValue = evaluateMaxState(child, alpha, bound, depth + 0.5,
depthLimit);
if (childvValue == null)
return null; // time limit reached
}
} else {
// scout search with zero window
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childValue = evaluateMinState(child, a, beta, depth + 0.5, depthLimit);
if (childvalue == null)
return null; // time limit reached
// checking if window fails low, if so, research with broader window
if ((i > 0) && (childValue <= a) && (alpha < childValue) && ((configurator.
isQuiescenceOn()) || (depthLimit - depth > 0.5))) {
researchNeeded = true;
bound = childValue;
childValue = evaluateMinState(child, alpha, bound, depth + 0.5,
depthLimit);
if (childvValue == null)
return null; // time limit reached

}
}
if (configurator.isTranspositionTableOn()) {
if (!researchNeeded)
transpositionTable.putOrUpdate(child, childvValue, a, beta);
else
transpositionTable.putOrUpdate(child, childValue, alpha, bound);
}
if ((depth == 0.0) && (isExactGameValue(childValue, alpha, beta)))
movesScores.put(child.getMoveName (), childValue);
if (childvValue < beta) {
beta = childValue;
updateMovesAlongPrincipalVariation(gameState, child);
if (configurator.isRefutationTableOn())
refutationTable.put(gameState, child);
}
if (alpha >= beta)
return beta;
if (Math.abs(beta) < GameState.H_SMALLEST_INFINITY)
a = beta - 1.0;
}

return beta;

}

The code corresponds well to the algorithm |10} yet, it is quite space consuming. Some overhead
is related to the checks if a repeated search has to be done due to the zero window failing high
or low. Also, a slightly different information is being put to the transposition table depending on
wether the evaluation came from the first search or the second search.

4.2.5 Transposition table

In the context of games, the name transposition historically comes from chess and denotes the
possibility of reaching the same position (the same state) by different sequences of moves. If the
in-depth recurrence for such a position has already been performed before, then one can save time
by taking a ready-made result provided that it is memorized somewhere — in a transposition table.
For example, note that in chess the state reached after the initial sequence e2-e4, e7-e5, Ng1-f3,
Ng8-f6 has 4! = 24 transpositions, accounting for all possible moves permutations.

For fast performance, typically a transposition table is implemented as a hash map, so that
one can look up its entries in constant time — O(1). Yet, it is possible to implement transposition
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tables as binary search trees, less memory-consuming but leading to the logarithmic look-up time
— O(log, n), n being the number of stored entries.

The keys to a transposition table can be state identifiers or their hash codes. For example
in chess, a key should take into account the positions of remaining pieces plus some additional
information about: castling possibilities, en passant captures, repetitions of moves. Sometimes,
apart from the main transposition table, one can use additional transposition tables as libraries of
openings or endgames.

In SaC, the overall implementation of the transpostion table mechanisms is constituted by the
following five elements:

1. the TranspositionTableKey class —it uses the (identifier, depth) pair as the key to represent
a state stored in the transpostion table,

2. the TranspositionTableEntry class — it represents an entry in the table associated to some
key; the entry stores three numbers related to the state evaluation: its lower bound, its exact
value, its upper bound (any of them can also be a null value),

3. the TranspositionTable interface — it defines a general set of methods that all transposition
table containers should provide,

4. the TranspostitionTableImpl class being the default (but still abstract) implementation of
the above interface,

5. the TranspositionTableAsHashMap or TranspositionTableAsTreeMap class — the ready to
use extensions of the default implementation, with the actual transposition table stored as a
particular data structure: a hash map or a tree map (red-black tree), respectively.

Provided that the transposition table is turned on, there are two main situations when search
algorithms interact with it. The first situation is when an algorithm iterates over the generated
descendants, and it checks for each of them if there is a ready evaluation stored in the transposition
table — this is done via the get(...) method. If so, the algorithm uses such an evaluation and
does not trigger the searching recurrence downward the tree (from that descendant on). The
second situation is when an algorithm reaches a terminal state or finishes processing a descendant
state, then, it is the right time to put the calculated evaluation into the transposition table — this
is done via the putOrUpdate(...) method. Both mentioned situations can be observed in the
listings of AlphaBetaPruning and Scout classes presented back in section Below, we show a
code excerpt from the TranspositionTableImpl class that demonstrates the mentioned get(...)
and putOrUpdate(...) methods and we then comment on it.

package sac.game;
import java.util.AbstractMap;
public abstract class TranspositionTableImpl implements TranspositionTable {

protected AbstractMap<TranspositionTableKey, TranspositionTableEntry> map;
protected int usesCount = 0;
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@Override

public Double get(GameState gameState, double alpha, double beta) {
Double valueOrBoundOrNull = doGet(gameState, alpha, beta);
if (valueOrBoundOrNull !'= null) gameState.setReadFromTranspositionTable(true);
return valueOrBoundOrNull;

}

protected Double doGet(GameState gameState, double alpha, double beta) {
TranspositionTableEntry entry = map.get(new TranspositionTableKey(gameState));
if (entry == null)
return null;

if (entry.getExactGameValue() != null) {
usesCount++;
return entry.getExactGameValue();
} else {
if ((entry.getUpperBoundOnGameValue() != null) && (entry.getUpperBoundOnGameValue() <
= alpha)) {
usesCount++;
return entry.getUpperBoundOnGameValue();
} else if ((entry.getLowerBoundOnGameValue() != null) && (beta <= entry.
getLowerBoundOnGameValue ())) {
usesCount++;
return entry.getLowerBoundOnGameValue();
}
}
return null;
}
@Override

public TranspositionTableEntry get(GameState gameState) {
return doGet(gameState);

}

protected TranspositionTableEntry doGet(GameState gameState) {
return map.get(new TranspositionTableKey(gameState));
}

@Override
public void putOrUpdate(GameState gameState, Double value, double alpha, double beta) {
TranspositionTableKey key = new TranspositionTableKey(gameState);
TranspositionTableEntry entry = map.get(key);
if (entry == null) {
// put
if (GameSearchAlgorithm.isExactGameValue(value, alpha, beta))
entry = new TranspositionTableEntry(null, new Double(value), null);
else {
if (value <= alpha) // alpha-beta window fails low - value is an upper bound
entry = new TranspositionTableEntry(null, null, new Double(value));

else
// alpha-beta window fails high - value is a lower bound
entry = new TranspositionTableEntry(new Double(value), null, null);
}
map.put (new TranspositionTableKey(gameState), entry);
} else {
// update

if (GameSearchAlgorithm.isExactGameValue(value, alpha, beta)) {
entry.setExactGameValue(value);
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entry.setlLowerBoundOnGameValue (null) ;
entry.setUpperBoundOnGameValue (null);
} else {
if ((value <= alpha) && ((entry.getUpperBoundOnGameValue() == null) || (value <
entry.getUpperBoundOnGameValue ()))) {
entry.setUpperBoundOnGameValue(value); // tighter upper bound

if ((entry.getlLowerBoundOnGameValue() != null) && (entry.
getUpperBoundOnGameValue () != null)
&& (entry.getLowerBoundOnGameValue () .doubleValue() == entry.

getUpperBoundOnGameValue () .doubleValue())) {
entry.setExactGameValue (new Double(entry.getLowerBoundOnGameValue().
doubleValue()));
entry.setLowerBoundOnGameValue (null);
entry.setUpperBoundOnGameValue (null);
}
} else if ((beta <= value) && ((entry.getLowerBoundOnGameValue() == null) || (
entry.getLowerBoundOnGameValue () < value))) {
entry.setLowerBoundOnGameValue (value); // tighter lower bound

if ((entry.getLowerBoundOnGameValue() != null) && (entry.
getUpperBoundOnGameValue () != null)
&& (entry.getLowerBoundOnGameValue () .doubleValue() == entry.

getUpperBoundOnGameValue () .doubleValue())) {
entry.setExactGameValue (new Double(entry.getLowerBoundOnGameValue ().
doubleValue()));
entry.setLowerBoundOnGameValue (null);
entry.setUpperBoundOnGameValue (null);

The presented excerpts take into account the Knuth-Moore theorem, cited in section#.1.3, and
operate accordingly.

Consider first the get(GameState gameState, double alpha, double beta) method. It
starts by lookin up a transposition table entry for given state and if such an entry exists it checks
whether the entry contains an exact game value or a bound. The exact value is returned un-
conditionally. A bound is returned only if it is useful. More precisely, an upper bound can be
taken advantage of if the current « is greater or equal to the bound, because it means that the
maximizing player cannot improve his payoff by following the given state. Conversely, a lower
bound can be taken advantage of if the current f3 is lower or equal to the bound, because it means
that the minimizing player cannot improve his payoff by following the given state. If no entry
or a useful bound exists in the table, the null value is returned. We should remark that apart
from the mentioned getter to which the current a-f window is passed on, there also exist another
getter — get(GameState gameState) —in the TranspositionTable interface, which is supposed
to return the whole entry (of TranspositionTableEntry type) that is the triplet of values: a lower
bound, an exact value, an upper bound. Yet, this is only an auxiliary getter, and all game searching
algorithms in SaC use the former variant, always passing on the current @ and f values.

Consider now the putOrUpdate(. ..) method. In the case of ‘put’ (wWhen no entry exists so far),
the method creates an entry and suitably places the given evaluation as an exact value or a bound
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depending on its relation with respect to the a-f window. The ‘update’ case is more expanded.
When the new value can be immediately recognized as an exact value, because it falls strictly in
between a and f3, then it is simply stored that way (lines 67-70). Otherwise, the code tries to make
an update of the suitable bound, but only in the case the new bound is tighter than the previous
one (lines 71-89). In a certain peculiar case, it is possible that after a bound update is made, both
upper and lower bounds meet (become equal) — then, the entry object is rearranged to represent
the exact value from now on.

Please note that the default TranspositionTableImpl implementation is an abstract class as it
does not specify the data structure underlying the transposition table:

protected AbstractMap<TranspositionTableKey, TranspositionTableEntry> map;

The aforementioned extensions existing in SaC — TranspositionTableAsHashMap and
TranspositionTableAsTreeMap — are very light classes, consisting solely of constructors that
assign a suitable data structure to the map object, as shown below.

package sac.game;
import java.util.HashMap;

public class TranspositionTableAsHashMap extends TranspositionTableImpl {
public TranspositionTableAsHashMap() {
this.map = new HashMap<TranspositionTableKey, TranspositionTableEntry>(512 * 1024, (float
) 0.75);

package sac.game;
import java.util.TreeMap;

public class TranspositionTableAsTreeMap extends TranspositionTableImpl {
public TranspositionTableAsTreeMap() {
this.map = new TreeMap<TranspositionTableKey, TranspositionTableEntry>();

}

4.2.6 Refutation table

Refutation table is a valuable addition in the setting of progressive search (a.k.a. iterative deepening)
i.e. when multiple searches are executed successively for new positions arising along an ongoing
game. It is a typical scenario under a main game loop. Then, it is possible that some information
from the previous searches can be used with a benefit in a new search. More precisely, the purpose
of a refutation table is to memorize the information about best continuations at shallow depths of
the tree. By best continuations meant are such moves — (parent, child) pairs — that led to the best
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payoff for given parent or even caused a cut-off in the previous search iteration (refutation moves or
cutoff moves). This information can be taken advantage of in the future, i.e. it can be used to reorder
children and try best continuations as first in the next iteration hoping to obtain the cut-offs sooner.
The scenario described above is often referred to as the principal variation search (PSV), although the
notion of ‘principal variation” itself has a slightly different meaning than the notions of ‘refutation’
or ‘refutation table Yet, the two are conceptually very close together (Marsland, 1983).

How large are refutation tables? Obviously, it depends on the game branching factor and on
how deep do we want to track the refutation information. For a moment consider for simplicity
a game with alternate moves and a constant branching factor b. After both players make their
moves, the root for the next analysis shifts somewhere two plies down the tree to one of b possible
states. Each of those states has some best descendant underneath (possibly a cut-off causer).
Therefore, there are at most b? entries be kept in the refutation table for that particular level. If
the programmer wants to track things (refutations) deeper, then the following quantities of new
entries occur (at most) for successive levels: b?, b3, b*, .. .. By default, SaC stores the refutation
information for 4 plies. It is also worth to add that for typical games there are much more entries
in a transposition table than in a refutation table.

In SaC, a refutation table keeps two collections inside: a ‘save collection” meant for saving
entries usable by the next search iteration, and a ‘read collection” meant for reading entries from
the previous iteration. Once the current iteration is completed, a reference to the ‘read collection’
is replaced by the ‘save collection’, whereas the reference to the ‘save collection” is emptified
(becomes a null). These operations are performed in the reset() method (provided by SaC’s
API) and a particular search algorithm is supposed to call this method in-between the iterations.

The overall SaC’s implementation of refutation tables is represented by the following three
elements:

1. the RefutationTable interface — it defines a general set of methods that all refutation table
containers should provide,

2. the RefutationTableImpl class being the default (but still abstract) implementation of the
above interface,

3. the RefutationTableAsHashMap or RefutationTableAsTreeMap class — the ready to use ex-
tensions of the default implementation, with the actual refutation table stored as a particular
data structure: a hash map or a tree map (red-black tree), respectively.

Similarly as it was in the case for transposition tables, the realizations of a refutation table as a
hashmap or a red-black tree leads to constant or logarithmic look-up times respectively.

Provided that the refutation table is turned on, there are two main situations when search
algorithms interact with it. The first is when an algorithm tries to reorder the descendants —
this is done via the reorder(...) method being called immediately after the descendants were
generated. If no suitable entry is found the refutation table (or there is just one descendant)
then no reordering takes place. The second situation is when an algorithm comes across a payoff

3 The ‘principal variation’ represents a complete sequence of best moves starting from the given root up to a given
maximum depth that leads to the minimax value of the game.
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improvement. Then, the search algorithm should register or update an entry in the refutation
table — this is done vie the put(...) method. Both mentioned situations can be observed in the
listings of AlphaBetaPruning and Scout classes presented back in section Below, shown are
the most important excerpts from the default RefutationTableImpl class together with short full
listings of RefutationTableAsHashMap or RefutationTableAsTreeMap classes.

package sac.game;

import java.util.AbstractMap;
import java.util.List;

import sac.Identifier;

public abstract class RefutationTableImpl implements RefutationTable {
protected final static double DEFAULT_DEPTH_LIMIT = 2.0;
protected double depthLimit;

protected int usesCount = 0;

protected AbstractMap<Identifier, Identifier> tableToSave null;
protected AbstractMap<Identifier, Identifier> tableToRead = null;

@Override
public void put(GameState parent, GameState child) {
double depth = parent.getDepth() - 0.5; // in progressive search, we assume that next
// iteration (possibly reading from refutation
// table) will start from level +0.5, so moves at
// level 0.0 are not memorized in refutation
table
if ((depth >= 0) && (depth <= depthLimit))
tableToSave.put(parent.getIdentifier(), child.getIdentifier());
}

@Override
public void reorder(GameState parent, List<GameState> children) {
if ((children == null) || (children.size() <= 1))
return; // no reorder done
double depth = parent.getDepth();
if (depth > depthLimit)
return; // no reorder done
Identifier bestChildIdentifier = tableToRead.get(parent.getIdentifier());
if (bestChildIdentifier == null)
return; // no reorder done
GameState bestChild = null;
int i = 0;
for (GameState child : children) {
if (child.getIdentifier().equals(bestChildIdentifier)) {
bestChild = child;

break;
}
i++;
}
if (i == 9)

return; // no reorder done
if (bestChild != null) {
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children.remove (bestChild);
children.add(®, bestChild); // putting best child in front
usesCount++;
}
}
@Override
public int size() {
return tableToSave.size() + tableToRead.size();
}
}
package sac.game;
import java.util.HashMap;
import sac.Identifier;
public class RefutationTableAsHashMap extends RefutationTableImpl {
public RefutationTableAsHashMap() {

super () ;
tableToSave = new HashMap<Identifier, Identifier>(Q);
tableToRead = new HashMap<Identifier, Identifier>();
}
public RefutationTableAsHashMap (double depthLimit) {
super (depthLimit);
tableToSave = new HashMap<Identifier, Identifier>();
tableToRead = new HashMap<Identifier, Identifier>(Q);
}
@Override
public void reset() {
tableToRead = tableToSave;
tableToSave = new HashMap<Identifier, Identifier>();
}
}
package sac.game;
import java.util.TreeMap;
import sac.Identifier;
public class RefutationTableAsTreeMap extends RefutationTableImpl {
public RefutationTableAsTreeMap() {

super () ;

tableToSave = new TreeMap<Identifier, Identifier>();

tableToRead = new TreeMap<Identifier, Identifier>();
}

public RefutationTableAsTreeMap (double depthLimit) {
super (depthLimit);
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tableToSave = new TreeMap<Identifier, Identifier>();
tableToRead = new TreeMap<Identifier, Identifier>();

3

@Override
public void reset() {
tableToRead = tableToSave;
tableToSave = new TreeMap<Identifier, Identifier>();

131
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4.2.7 Configuration options for searching games

On several occasions we have mentioned the usage of a GameSearchConfigurator object. Below,
we present a brief code listing of this class, with all configuration options and their default values.
We purposely leave the javadocs present in the listing to make the meaning of options more clear.
Every configuration option can be accessed by a suitable getter or setter (that are skipped in the
listing).

public class GameSearchConfigurator {

Vi
* Identifier type for states. By default: STRING.
:':/

private IdentifierType identifierType = IdentifierType.HASH_CODE;

/ * ok
* Depth limit expressed in full moves (not plies). By default: 3.5 (i.e. 7 plies).
*/

private double depthLimit = 3.5;

/ XS
* Is transposition table on. By default: true.
*/

private boolean transpositionTableOn = true;

SR
* Class name for transposition table. By default: sac.game.TranspositionTableAsHashMap.
*/
private String transpositionTableClassName = "sac.game.TranspositionTableAsHashMap";
Vi
* Is quiescence on. By default: true.
*/
private boolean quiescenceOn = true;
Vi
* Is refutation table on. By default: true.
* /
private boolean refutationTableOn = true;
Vi
* Class name for refutation table. By default: sac.game.RefutationTableAsHashMap.
* /
private String refutationTableClassName = "sac.game.RefutationTableAsHashMap";
/ ok
* Depth limit for refutation table. By default: 2.0 (RefutationTableImpl.DEFAULT_DEPTH_LIMIT
).
*/

private double refutationTableDepthLimit = RefutationTableImpl.DEFAULT_DEPTH_LIMIT;

Vi
* Do parents memorize references to their children. Set to false for lower memory usage (
WARNING: in that case
* drawing game tree via GraphViz is impossible). By default: false.
*/
private boolean parentsMemorizingChildren = false;




—_
OO OO UTH WN —

— =
N =

CHAPTER 4. SEARCHING GAME TREES 133

Vi
* Time limit in milliseconds. By default: ’infinity’ in long type (Long.MAX_VALUE).
* /

private long timelLimit = Long.MAX_VALUE;

public GameSearchConfigurator() {
}

public GameSearchConfigurator(String propertiesFilePath) throws Exception {

}

// getters, setters

A configurator can be instatiated either by a default constructor with no arguments —
GameSearchConfigurator(), or from a properties text file — GameSearchConfigurator(String
propertiesFilePath). The names of options in the properties file are uppercased versions of field
names, and with underscores separating successive words. Below, we show a possible exemplary
contents of a configuration .properties file with some non-default values.

#Example of game configurator settings

identifierType=STRING

depthLimit=3.5

transpositionTableOn=true
transpositionTableClassName=sac.game.TranspositionTableAsHashMap
quiescenceOn=true

refutationTableOn=true
refutationTableClassName=sac.game.RefutationTableAsHashMap
refutationTableDepthLimit=2.0

parentsMemorizingChildren=false

timeLimit=Long.MAX_VALUE
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4.3 Examples

4.3.1 Checkers

The game of checkers as such does not require an introduction. As regards the computer programs
playing checkers, one of the historically important ones was a program written by Samuel in early
1950s, see (Samuel, 1983). The program was capable of self training, equipped with a weighted
evaluation function. The weights (parameters) of that function were exposed to updates and
improvements as two instances of the program were playing many games against each other. The
program evolved this way was able to beat quite advanced players, but not the best ones of that
time.

The exemplary implementation of checkers under SaC is not meant to introduce a strong
program, but simply to demonstrate the API guidelines needed to be fulfilled by a programmer
to implement similar mind games using SaC. We start by showing the code excerpts from the
sac.examples.checkers.Checkers class representing a checkers state (for full source code the
reader is addressed to the library), we then show several experiments and illustrations related to
checkers prepared using SaC.

It is worth to remark that the SaC distribution is equipped with a simple graphical interface
designed for experimenting with checkers and with different search algorithms — the program is
represented by the sac.examples.checkers.CheckersGame class and a screenshot of it is shown
in Fig. It allows for a ‘human vs computer” play or ‘computer vs computer’, using different
algorithms and configurations. Also, it logs many informations to the screen. The program can be
triggered for example by the following line:

java -Xmx2048M -cp "sac-1.0.0.jar;jfreechart-1.0.14.jar;jcommon-1.0.17.jar;swt.jar" sac.examples.checkers.CheckersGame
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Figure 4.1: A screenshot from the examplary checkers program distributed with SaC —
sac.examples.checkers.CheckersGame.
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Implementation of checkers state

Our SaC representation of a checkers state — the sac.examples.checkers.Checkers class —
stores four lists of pieces locations accounting for: white pawns, white kings, black pawns, and
black kings. The locations themselves are encapsulated in the BoardLocation class, representing
a pair of two-dimensional Coordinatesﬂ Besides, the state is equipped with necessary SaC rou-
tines for: (1) identification of states — by either the toString() or the hashCode () method, (2)
generation of descandants — generateChildren(), and (3) heuristic evaluation of the position
— appended using the setHFunction(new StateFunction() {...}) static method. The code
excerpts presented below skip large fragments containing auxiliary constants and helper methods
(e.g. for copying states, exporting states as images or files, checking the presence of a piece at
particular location, etc.). Also a large part, rather technical, related to the generation of moves and
captures was skipped. We only marked the signatures of the suitable methods involved in this
aspect, in particular: populatePossiblePawnKills(...), populatePossibleKingKills(...),
populatePossiblePawnMoves(...), populatePossibleKingMoves(...). We can mention that
methods for captures (kills) work recursively by calling themselves after each partial capture
is discovered, in order to look for further capture possibilities (within the same move) from a
given intermediate location. When a legal move or capture is discovered, its string representation
(e.g. “Al1:C3”) is appended to a certain global list of moves passed as a parameter.

We now ask the reader to have a brief look at the code, we then give a few additional comments.

package sac.examples.checkers;

public class Checkers extends GameStateImpl {

public static int n;

private static final double PAWN_HEURISTIC_FACTOR
private static final double KING_HEURISTIC_FACTOR

100.0;
10.0 * PAWN_HEURISTIC_FACTOR;

private List<BoardLocation> whitePawns = null;
private List<BoardLocation> whiteKings = null;
private List<BoardLocation> blackPawns = null;
private List<BoardLocation> blackKings = null;

private List<String> possibleMoves = null;
private boolean hasSomeKillMoves = false;

public Checkers(Checkers parent) {
super () ;

if (parent == null) {
whitePawns = new ArraylList<BoardLocation>();
whiteKings = new LinkedList<BoardLocation>();

*We do not present that class hereby for brevity — it is a straighforward implementation, keeping a pair of integers
to indicate a two dimensional location and providing the necessary routines to convert forth and back from chess-like
notation (e.g.: Al, B4, etc.) to integer coordinates.
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blackPawns = new LinkedList<BoardLocation>();
blackKings = new LinkedList<BoardLocation>();

} else {
whitePawns = copylLocationList(parent.whitePawns);
whiteKings = copylocationlList(parent.whiteKings);
blackPawns = copylLocationList(parent.blackPawns);
blackKings = copylLocationlList(parent.blackKings);

}

setMaximizingTurnNow (parent.isMaximizingTurnNow());
}
@Override

public String toString() {
return toShortString();
}

public String toShortString() {
StringBuilder builder = new StringBuilder("");
builder.append(locationsToString(whitePawns));
builder.append (DESCRIPTION_SEPARATOR);
builder.append(locationsToString(whiteKings));
builder.append (DESCRIPTION_SEPARATOR);
builder.append(locationsToString(blackPawns));
builder.append (DESCRIPTION_SEPARATOR);
builder.append(locationsToString(blackKings));
builder.append (DESCRIPTION_SEPARATOR) ;
builder.append(Boolean.valueOf(isWhiteTurnNow()).toString());
return builder.toString();

}

@Override
public int hashCode() {
List<Integer> locationsAsXY = new ArraylList<Integer>();

for (BoardLocation location : whitePawns) {
locationsAsXY.add(location.getX());
locationsAsXY.add(location.getY());

}

locationsAsXY.add(®); // serving as separator

for (BoardLocation location : whiteKings) {
locationsAsXY.add(location.getX());
locationsAsXY.add(location.getY());

}

locationsAsXY.add(®); // serving as separator

for (BoardLocation location : blackPawns) {
locationsAsXY.add(location.getX());
locationsAsXY.add(location.getY());

}

locationsAsXY.add(®); // serving as separator

for (BoardLocation location : blackKings) {
locationsAsXY.add(location.getX());
locationsAsXY.add(location.getY());

}
locationsAsXY.add(®); // serving as separator
locationsAsXY.add(isWhiteTurnNow() ? 1 : -1); // serving as ’whos turn’

identifier
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return locationsAsXY.hashCode();

public BoardLocation makeMove(String moveString, boolean changeTurn) {
moveString = moveString.toUpperCase();
possibleMoves = null;
StringTokenizer tokenizer = new StringTokenizer (moveString, MOVE_SEPARATOR);

List<BoardLocation> pawns = null;
List<BoardLocation> kings = null;
List<BoardLocation> opponentPawns = null;
List<BoardLocation> opponentKings = null;

if (isWhiteTurnNow()) {
pawns = whitePawns;
kings = whiteKings;
opponentPawns = blackPawns;
opponentKings = blackKings;
} else {
pawns = blackPawns;
kings = blackKings;
opponentPawns = whitePawns;
opponentKings = whiteKings;

}

BoardLocation location = BoardLocation.stringToLocation(tokenizer.nextToken());
BoardLocation newLocation = null;

List<BoardLocation> piecesInPlay = null;
boolean isPawnInPlay = false;
if (pawns.contains(location)) {
piecesInPlay = pawns;
isPawnInPlay = true;
} else
piecesInPlay = kings;

while (tokenizer.hasMoreTokens()) {
newLocation = BoardLocation.stringToLocation(tokenizer.nextToken());
int dx = (newLocation.getX() - location.getX() > 0) ? 1 : -1;
int dy = (newLocation.getY() - location.getY() > 0) 7?2 1 : -1;
piecesInPlay.remove(location);
while (!location.equals(newLocation)) {
location.setX(location.getX() + dx);
location.setY(location.getY() + dy);
if (opponentPawns.contains(location))
opponentPawns.remove(location);
else if (opponentKings.contains(location))
opponentKings.remove(location);
}
piecesInPlay.add(newLocation);
Collections.sort(piecesInPlay);

}

// promotion check
if (isPawnInPlay) {
if ((isMaximizingTurnNow()) && (newLocation.getY() == n)) {
whitePawns.remove(newLocation);
whiteKings.add(newLocation);
} else if ((!isMaximizingTurnNow()) && (newLocation.getY() == 1)) {
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blackPawns.remove(newLocation);
blackKings.add(newLocation);

}
// ply
if (changeTurn) {
setMaximizingTurnNow (!isMaximizingTurnNow());
}
refresh();

return newlLocation;

public List<String> getPossibleMoves() {

if (possibleMoves != null)
return possibleMoves;

possibleMoves = new ArraylList<String>(Q);

// king kill-moves
Iterator<BoardLocation> kingsIterator = (isWhiteTurnNow()) ? whiteKings.iterator ()
blackKings.iterator();
while (kingsIterator.hasNext()) {
BoardLocation king = kingsIterator.next();
populatePossibleKingKills(this, "", isWhiteTurnNow(), king, possibleMoves,
NOTHING_FORBIDDEN) ;

// comment the line beneath if free choice of kills is given (if maximal must be
chosen,

// leave the line uncommented)

eliminateNonMaximalKills(possibleMoves);

}

// uncomment the line beneath if kings have the ’killing priority’ over pawns
// if (lresult.isEmpty()) return result;

// pawn kill-moves

Iterator<BoardLocation> pawnsIterator = (isWhiteTurnNow()) ? whitePawns.iterator()
blackPawns.iterator();

while (pawnsIterator.hasNext()) {
BoardLocation pawn = pawnsIterator.next();

"o

populatePossiblePawnKills (this, , isWhiteTurnNow(), pawn, possibleMoves);

// comment the line beneath if free choice of kills is given (if maximal must be
chosen,
// leave the line uncommented)
eliminateNonMaximalKills(possibleMoves);
}
if (!possiblelMoves.isEmpty()) {
hasSomeKillMoves = true;

// comment the line beneath if kills are not mandatory
return possibleMoves;

3

// king regular moves
kingsIterator = (isWhiteTurnNow()) ? whiteKings.iterator() : blackKings.iterator();
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while (kingsIterator.hasNext()) {
BoardLocation king = kingsIterator.next();
populatePossibleKingMoves (this, king, possiblelMoves);

}

// pawn regular moves
pawnsIterator = (isWhiteTurnNow()) ? whitePawns.iterator() : blackPawns.iterator();
while (pawnsIterator.hasNext()) {

BoardLocation pawn = pawnsIterator.next();

populatePossiblePawnMoves (this, isWhiteTurnNow(), pawn, possibleMoves);

}

return possibleMoves;

}

private static void populatePossiblePawnKills(Checkers checkers, String prefix, boolean
isWhitesTurnNow, BoardLocation pawn, List<String> globallList) {

3
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private static void checkKingKillsAlongDirection(Checkers checkers, BoardLocation king, int

dx, int dy, List<BoardLocation> opponentPawns,

List<BoardLocation> opponentKings, List<BoardLocation> ownPawns, List<BoardLocation>

ownKings, List<String> moves) {

3

private static void populatePossibleKingKills(Checkers checkers, String prefix, boolean
isWhitesTurnNow, BoardLocation king, List<String> globallist,
int forbiddenDirection) {

}

private static void populatePossibleKingMoves(Checkers checkers, BoardLocation king, List<

String> globallist) {

3

private static void populatePossiblePawnMoves (Checkers checkers, boolean isWhitesTurnNow,
BoardLocation pawn, List<String> globallist) {

3

private void eliminateNonMaximalKills(List<String> killMoves) {

3

@Override
public List<GameState> generateChildren() {
List<String> moves = getPossibleMoves();
List<GameState> children = new LinkedList<GameState>();
for (String move : moves) {
Checkers child = new Checkers(this);
child.makeMove (move, true);
child.setMoveName (move) ;
children.add(child);

}

return children;
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@Override

public boolean isQuiet() {
getPossibleMoves(); // in order to calculate hasSomeKillingMoves flag
return 'hasSomeKillMoves;

}

static {
setHFunction(new StateFunction() {

@Override
public double calculate(State state) {
Checkers checkers = (Checkers) state;
double value = 0.0;
if ((checkers.whitePawns.size() + checkers.whiteKings.size() == 0) || ((checkers.
isWhiteTurnNow()) && (checkers.getPossibleMoves().isEmpty()))) {
value = Double.NEGATIVE_INFINITY;
return value;
} else if ((checkers.blackPawns.size() + checkers.blackKings.size() == 0)
|| ((!'checkers.isWhiteTurnNow()) && (checkers.getPossibleMoves().isEmpty
O {
value = Double.POSITIVE_INFINITY;
return value;

}

// material
value = PAWN_HEURISTIC_FACTOR * (checkers.whitePawns.size() - checkers.blackPawns
.size()) + KING_HEURISTIC_FACTOR
* (checkers.whiteKings.size() - checkers.blackKings.size());

// pawn advancement

for (BoardLocation location : checkers.whitePawns)
value += location.getY(Q);

for (BoardLocation location : checkers.blackPawns)
value -= (n + 1 - location.getY());

return value;

s

The first important element to note is that our Checkers class extends the default game state
implementation — sac.game.GameStateImpl, a prerequisite of SaC.

As regards the states identification functionality, both toString(...) and hashCode(...)
possibilities work by building up suitable concatenations (accordingly to the type returned) of
pieces locations, consecutively for: white pawns, white kings, black pawns, black kings, using some
recognizable separators in-between. Finally, the concatanation is appended with an information
about whose turn it is now to play.

As regards the move generation functionality, noted should be the getPossibleMoves()
method, doing the main work and calling several submethods underneath. It first collects the
capture moves for kings and pawns and then, if no capture moves exist, it collects the regular
displacement moves. If some capture moves do exist, the player is obliged to perform one of
them (instead of a non-capture move) according to the rules of checkers. Also, it is worth to
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add that when many capture moves are possible, the player must choose one of such moves that
take the largest possible number of opponent’s pieces. This rule is fulfilled in the code by the
eliminateNonMaximalKills(...) method, which removes from the collected list the moves with
too few captures. Finally the getPossibleMoves () method returns the list of strings, representing
the moves in a chess-like notation. The method directly responsible for the generation of des-
candants, provided by SaC’s interace, is the generateChildren(...) method. In our example,
the generateChildren(...) implementation calls first the aforementioned getPossibleMoves ()
method and then iterates over the moves, applying each of them to a copy of the parent state via
amakeMove (String) call. Please note also that each descendant gets labeled with the name of the
move it was caused by, using the child.setMoveName(...) call — this is also a must within SaC
that was already described in the “Hello world” section[I.3]for games.

As regards the heuristic evaluation of states, we implemented a very simple function for the
purpose of example. As it is required by SaC, the heuristics is attached statically to the class
via the setHFunction(...) method. In this case, we pass to it a StateFunction object defined
anonymously. Looking at its calculate(...) method, two parts can be seen. The first part
pertains to win positions. It returns infinity (with a suitable sign) in case some player is left with
no pieces or no moves (a blockage). The second part, calculates the actual evaluation for the non-
win positions. The evaluation takes into account only two components: (1) the material, where
kings are weighted as being worth ten times a paw (2) the pawn advancement, where each
pawnadds 1, 2, ..., or n — 1 points depending on the board row (rank) it is located at, counting
rows towards the promotion. To be more precise, the materialistic evaluation treats each pawn
as being worth 100 points (in chess such points are often referred to as centipawns), and the king
is worth 1000 points. Relatively to it, the rewards for pawn advancements are fairly small. Each
next row is being counted for 1 more point (a single centipawn). Clearly, the function described
above does not translate onto a strong program playing checkers. For the sake of simplification all
positional aspectsﬂ were neglected on purpose.

One more element worth noticing is the implementation of the isQuiet(...) method. The
method is provided by the sac.GameState interface. In our example, a state of checkers is regarded
as quiet if there are no immediate captures possible from it. We remind that this functionality
is related to the algorithmic gadget known as Quiescence, which leads to locally deeper search
horizons when a series of captures occurs; see also page[110]in section

Some trees from initial checkers position

Hereby, we present some illustrations representing SaC’s checkers searches with trees generated
from the initial checkers position (i.e. with white pieces to make the first move). We remark that
by default SaC does not memorize parent-child links in order to save memory. Therefore, in order

SThis relative value is chosen as a pure guess in our exemplary checkers. Also, owing to that choice, a user
experimenting with the sac.examples.checkers.CheckersGame program can easily observe differences in reported
evaluations due to the fact that: pawn advancements change the evaluation by 1 point, pawn captures by 100 points,
and promotions to kings (or king captures) change it by 1000 points.

®E.g.: pawns structure / patterns, ‘side vs center’ placement, defended pieces, occupation of main diagonal by kings,
etc.
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to produce Graphviz illustrations one has to explicitly reconfigure the algorithm to be executed.
The listing below is an example how this reconfiguration can be done.

GameSearchConfigurator configurator = new GameSearchConfigurator();
configurator.setParentsMemorizingChildren(true);

GameSearchAlgorithm algorithm = new AlphaBetaPruning(someCheckersState, configurator);
algorithm.execute();
GameSearchGraphvizer.go(algorithm, "d:/output.dot", true, true);

We remind the coloring scheme in the figures: yellow denotes the initial state, light gray
denotes visited regular states, dark gray indicates non-win terminal states, blue indicates win
terminal states (a win for either player), dark red indicates states for which the game value or a
bound on that value was read as a ready result (because these states had occurred before) from
the so called transposition table3 , light red indicates the so called cutoff states which could not
affect the game value, green indicates states residing along the principal variation. In every box,
displayed is an information about: depth of a state, its heuristic evaluation , its game value v (also
known as the minimax value) assigned by the search procedure, and its representation (if turned
on). We also encourage the reader to zoom-in the figures.

Fig. shows a tree generated using alpha-beta pruning algorithm with depth set to 1.0
(two half-moves). Fig. is meant to depict the difference in trees generated using the Min-
Max algorithm, without and with the Quiescence option. This time the depth is set to 1.5 (so
for simplification the states are displayed with no contents inside). Fig. 4.4/ compares the trees
produced by alpha-beta pruning and Scout, both using 1.5 as the general search horizon, whereas
Fig.{4.5|shows an analogical comparison with deeper general horizon — 2.0.

Figure 4.2: Checkers search tree generated by SaC from the initial position (root), using alpha-beta
pruning algorithm and search depth set to 1.0 (two half-moves). The Queiscence option is turned
on and makes the algorithm look beyond the 1.0 depth in several places.
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Endgame examples

In this subsection we show some examples of SaC results obtained when searching endgames of
checkers.

Fig. pertains to a position with 3 white pawns against 2 black pawns, and white pieces
to play now. The gap between opposing pieces is just one row, therefore the winning move
for white — G5:H6 — is discovered quickly. SaC visited 89 states in about 50ms. The global
search horizon was narrowed to 2.5 and the Quiescence option was on, which made the algorithm
reach the 3.5 depth in several places. The displayed payoff assiociated with the G5:H6 move is
1.1556598724114885E308, representing a win in 7 half-moves.

Fig. also pertains to an endgame with 3 pawns against 2, but with two rows of a gap
in-between. This ‘little” difference causes that the algorithm is unable to discover (with certainty)
a winning move within the default search horizon of seven half-moves (3.5). Therefore, we forced
the algorithm to see deeper, setting the horizon to 5.0. After visiting 2 095 and about half a second of
time the right move D2:E3 was discovered with its payoff 1.0622732160550047E308. It represents
a win in 12 half-moves, as the algorithm reached positions that deep owing to the Quiescence. The
reader should also note the difference between the number of states drawn in the figure — 3506
— and the number of states actually visited by the algorithm — 2 095. The difference is caused by
cutoff states and states for which the evaluation was read from the transposition table.

Fig.|4.8|depicts a “3 kings vs 1 king” ending. It shows how white can trap opponent’s king in
9 half-moves at most. Since the number of visited states — 65438 — is now considerably large,
we prepared a special visualization where the right sequence of moves (the principal variation) is
exposed whereas subtrees generated by other moves (side moves) are only marked by their roots.
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Endgame example 1

(a) endgame position

’ ® ©

; @

(b) SaC result

Searching with sac.game.AlphaBetaPruning started...
Searching with sac.game.AlphaBetaPruning done in 46 ms.
Closed states: 89

General depth limit: 2.5

Maximum depth reached (Quiescence): 3.5

Transposition table size: 89

Transposition table uses: 2

Refutation table size: 41

Refutation table uses: @

Moves scores: {G5:H6=1.1556598724114885E308, F4:E5=999.0}
Best moves: [G5:H6]

Principal variation: [G5:H6, G7:F6, F4:G5, F6:E5, G5:F6, E5:G7,

H6:F8:D6]

Figure 4.6: SaC results for an endgame checkers position.

horizon of depth 3.5.

Win for white found within search
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Endgame example 2

(a) endgame position (b) SaC result

Searching with sac.game.Scout...
Searching done. Time: 577 ms.
Closed states: 2095
General depth limit: 5.0
. ' Maximum depth reached (Quiescence): 6.0
Transposition table size: 1632
Transposition table uses: 498
Refutation table size: 127
O Refutation table uses: 0
Scores: {D2:E3=1.0622732160550047E308, C3:B4=204.0, B2:A3=101.0}
() () Best move: D2:E3
Principal variation: [D2:E3, B6:A5, B2:A3, D6:C5, C3:D4, AS5:B4,
A5:B4, D4:B6, B4:C3, B6:A7, C3:B2, A3:Cl]

(c) search tree for depth 5.0 using Scout (3 506 states drawn, star-like layout)

|

T
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40 \\ MR
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Figure 4.7: SaC results for an endgame checkers position. Win for white found within search
horizon of depth 6.0.
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Endgame example 3 — “3 kings vs 1 king”

(a) endgame position (b) SaC result
\ @ ° Searching with sac.game.Scout started...
Searching with sac.game.Scout done in 4164 ms.
7 Closed states: 65438

General depth limit: 3.5
Maximum depth reached (Quiescence): 4.5
s Transposition table size: 64106
Transposition table uses: 82549
4+ Refutation table size: 5734
Refutation table uses: 0
Moves scores: {B2:D4=1.0985902490825263E308, B2:A3=3000.0}
2 (:) Best moves: [B2:D4]
Principal variation: [B2:D4, D8:A5, B8:D6, A5:E1, D6:G3, E1:H4,
‘@ @ C1:G5, H4:F6:C3, Al1:D4]

(c) fragment of search tree with principal variation using for depth 3.5 using Scout

mx\\\
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W"Wff//f
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Figure 4.8: SaC results for an endgame checkers position. Win for white found within search
horizon of depth 4.5.
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4.3.2 Nim

Nim is a two person mind game, where players interchangeably remove objects from a given
number of piles. A player must take at least one object and can take as many objects as he wants
provided that they come from the same pile. Depending on the convention being played, the
player to take the last remaining object is either the winner (normal variant) or the loser (misére
variant). A common initial setup is that given are three piles, consisting of 3, 4 and 5 objects; but,
other setups are possible.

Nim has been solved mathematically (for any number of piles and objects). There exist a simple
calculation scheme telling which player will win at a given position with an optimal line of play.
Moreover, it is possible to tell the right move. The key notion of the scheme is a so called nim-sum
of pile sizes, coded in the binary system. The sum is taken using the exclusive-or operation (or
modulo 2 sum). For example for piles of sizes 3, 4, 5, their binary representations and the nim-sum
are as follows:

3= (O/ ]-/ 1)2/
4= (1/ 01 0)2/
5=(1,0,1),

nim-sum: = (0, 1, 0)s.

It turns out that the optimal strategy boils down to making moves which keep the nim-sum of the
remaining piles equal to zero. Interestingly, this strategy is in general valid for both conventions of
the play (normal or misere), and only the very endgames require slight changes depending on the
convention. In the normal variant, when the game is reduced to two piles only, the player should
make such moves to keep both piles equal. In the misére variant, when there remain piles with no
more than two objects, the correct move is to leave an odd number of piles of size one. More details
on Nim, its variants, history and strategy can be found at: https://en.wikipedia.org/wiki/Nim.

We now move to the implementation issues and SaC’s API. As in former examples, we first
show code excerpts from the state representation class — sac.examples.nim.NimState, then
we comment on it with the focus on vital elements: generation of descendants, identification,
heuristics.

package sac.examples.nim;

public class NimState extends GameStateImpl {
private List<Integer> piles;

public NimState() {
piles = new LinkedList<Integer>(Q);
piles.add(3);
piles.add(4);
piles.add(5);
setMaximizingTurnNow (true) ;
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}

public NimState(List<Integer> initial, boolean isWhiteTurnNow) {

piles = new Arraylist<Integer>(initial);
Collections.copy(piles, initial);
setMaximizingTurnNow (isWhiteTurnNow) ;

}

public NimState(NimState parent) {
super () ;
piles = new ArrayList<Integer>();
for (int item : parent.getPiles()) {
piles.add(item);
}
setMaximizingTurnNow (parent.isMaximizingTurnNow());

}

public List<Integer> getPiles() {
return piles;

}

public List<List<Integer>> getPossibleMoves() {
List<List<Integer>> list = new ArraylList<List<Integer>>();
int qi;
for (int i = 0; i < piles.size(); i++) {
qi = piles.get(i);
for (int j = 1; j <= qi; j++) {
Arraylist<Integer> move = new ArraylList<Integer>(
Collections.nCopies(piles.size() - 1, 0));
move.add(i, j);
list.add(move);
}
}
return list;
}

public void makeMove(List<Integer> move) {
assert (checkMove (move));
int newValue;
for (int i = 0; i < piles.size(); i++) {
newValue = piles.get(i) - move.get(i);
piles.remove(i);
piles.add(i, newValue);
}
setMaximizingTurnNow (!maximizingTurnNow) ;
refresh();
}

public void makeMove(String stringMove) {
String[] si = stringMove.substring(l, stringMove.length()
List<Integer> move = new LinkedList<Integer>(Q);
for (String s : si) {
move.add(Integer.parseInt(s.trim()));
}
makelMove (move) ;

3

public boolean checkMove(List<Integer> move) {
if (piles.size() != move.size()) {
return false;

}

1) .split(",");
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for (int i = 0; i < piles.size(); i++) {
if (!'((move.get(i) <= piles.get(i)) && (move.get(i) > 0))) {
return false;

}
}
return true;
}
@Override

public List<GameState> generateChildren() {
List<GameState> children = new ArraylList<GameState>();
for (List<Integer> move : getPossibleMoves()) {
NimState child = new NimState(this);
child.makeMove (move);
child.setMoveName (move.toString());
children.add(child);

}

return children;
}
@Override

public String toString() {
return piles.toString() +

nn

+ maximizingTurnNow;

}

@Override

public int hashCode() {
String string = toString();
return string.hashCode();

public boolean isTerminal() {
for (Integer item : piles) {
if (item > 0)
return false;

}
return true;
}
static {
setHFunction(new StateFunction() {
@Override
public double calculate(State state) {
NimState nimState = (NimState) state;
if (nimState.isTerminal())
return Double.POSITIVE_INFINITY * (nimState.isMaximizingTurnNow() ? -1 : 1);
return 0.0;
}
s
}

The piles of objects are represented by a list of integers — List<Integer> piles — so that
piles.get(i) returns the number of objects remaining on the i-th pile.

There are two methods present in the class related to making a move in a Nim game —
makeMove (List<Integer> move) and makeMove(String stringMove). They differ only in the
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type of the argument and work the same way underneath. As described in the introduction on Nim,
typically a player is allowed to remove objects only from one pile. In the implementation though we
decided to go for more generality, and a move is a sequence of length equal to the number of piles,
where numbers in the sequence represent how many objects should be subtracted from successive
piles. Hence, potentially one could write for example: nimState.makeMove(“2,0,1”), which
indicates that two objects should be removed from the first pile, no objects from the second pile,
and one object from the third. Despite the more general code at this place, there is a method named
getPossibleMoves(...), whichin fact generates only the moves where objects are subtracted from
a single pile. Therefore, the generated sequences, representing legal moves, consist of a single non-
zero value somewhere and zeros elsewhere.

As regards the identification of states, both toString() and hashCode() methods have been
implemented. Yet, in fact the hashCode () method first calls the toString() and then converts its
result to an integer, using the Java built-in mechanism to calculate a hash code for a string’|

The position evaluation function is, as always, attached via the setHFunction(...) static
method. In our Nim implementation we distinguish only three possible evaluations: +co (for win
positions) or 0 (for non-win positions). As it was mentioned before in the introduction, Nim is not
a kind of game (contrarily e.g. to chess or checkers) where a player is capable of building slowly
and incrementally an advantage for himself. A move is either correct or not at any stage of a game.
That is why the code shown represents only such a primitive heuristic function/’| In the presented
form of the code, the heuristics reflects the normal game variant, i.e. the player to take the last
object is the winner.

’seehttp://docs.oracle. com/javase/7/docs/api/java/lang/String.html#hashCode%28%29

81t is possible to comment that the remarks above (about a move being either correct or not) are in fact also correct
for chess. Chess is not a solved game. And although its game tree is astronomically huge, it is a finite tree. Rules like:
triple repetition of a position, pereptual check, etc. cause that the game cannot be played for ever. Since the chess tree is
finite, it is easy to prove that there exist an objective answer about the outcome of the game under an optimal play. We,
people, do not know that outcome (chess is still unsolved), but it certainly does exist.
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Chapter 5

Tools

This chapter is devoted to additional tools provided with SaC. They are not indespensible in
a typical usage, but provide some auxiliary functionalities that might make the work with SaC
more convenient. First, discussed is SaC’s interface to Graphviz — a language for automatic graph
drawing. Secondly, we describe how to carry out batch experiments using SaC and how to collect
and plot statistics from such experiments. The plots are generated with the help of jFreeChart
library. Finally, we present the possibility of monitoring the progress of graph searching (for
heavy problems).

5.1 Graphviz

Graphviz (short for Graph Visualization Software) is a free software and an underlying language
for automatic graph drawing. The reader can jump ahead to look at figures 5.1)and 5.2 to have
an outlook on the Graphviz language. Yet, we should stress that a SaC user is not required to be
familiar with that language and still can generate visualizations for his search experiments. As
one can see, for the graph from Fig. there is no information in the code about the formatting
style of the nodes and edges. The code describes just the structure of the graph. The graph from
Fig. (or more precisely the search tree) has been generated automatically by SaC for a simple
sliding puzzle problem. Apart from the structure, the code now describes also the formatting of
its elements, partially via the HTML language.

In SaC, we enable a possibility to generate output text files, compliant with the language. The
files contain represenations of graphs or trees searched by a particular algorithm. Having such a
file and the Graphviz software installed, the user can produce visualizations using one of Graphviz
engines like dot, neato, etc. For more details about the Graphviz and its language we address the
reader to the Graphviz official website: http://www.graphviz.org. We shall now discuss some
elements of SaC’s API related to Graphviz.

Any search algorithm from SaC that has stopped successfully can potentially be ‘flushed out’
to a .dot file compliant with the Graphviz language. There is one necessary condition — the
user has to explicitly reconfigure SaC, before an algorithm is executed, and make parent states
memorize their children states. By default, only the opposite way link is memorized — from a
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(a) (b)
digraph g {
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Figure 5.1: A simple directed graph coded in the Graphviz language (a) and rendered out (b).

child to its parent. The mentioned reconfiguration facilitates the generation of the Graphviz code,
but obviously is more memory consuming.

The reconfiguration is done either by the sac.graph.GraphSearchConfigurator class or the
sac.game.GraphSearchConfigurator class, depending on the type of search. Let us remind here
an example from the checkers related section.

GameSearchConfigurator configurator = new GameSearchConfigurator();
configurator.setParentsMemorizingChildren(true);

GameSearchAlgorithm algorithm = new AlphaBetaPruning(someCheckersState, configurator);
algorithm.execute();
GameSearchGraphvizer.go(algorithm, "d:/output.dot", true, true);

In the example, the algorithm to be executed is, at its instantiation, equipped with a an initial
state and additionally with a configurator. The configurator’s option to memorize parent-children
links is set to true. Once the algorithm is finished, an output .dot file compliant with Graphviz is
produced by an invocation of the sac.graphviz.GameSearchGraphvizer.go(...) method. The
arguments to that method are as follows: the algorithm object, a path to the target output file,
a boolean flag stating whether the nodes should be rendered out with their contents (i.e. state
representations) or just as empty circles, and finally another boolean flag stating wheter names of
moves (or manipulations) should be printed near the edges.

On the Windows operating system, the following exemplary command-line invocation would
produce an output .pdf file from the given .dot file (provided that Graphviz is installed in the
system and that the dot command is visible).

D:\>dot -Tpdf output.dot -o d:\output.pdf
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digraph g {
ranksep=0.25;
node [shape=none,height=0.1];

-2097210167
[label=<<TABLE BORDER='®’ CELLBORDER="1’ CELLPADDING='2’ CELLSPACING=’"0’ BGCOLOR='yellow’><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’>
depth = 0.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’>g = 0.0</FONT></TD></TR><TR><TD><FONT FACE=’monospace’
POINT-SIZE='8’>h = 1.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’>f = 1.0</FONT></TD></TR><TR><TD><TABLE BORDER=’0’
CELLBORDER="1" CELLPADDING="2’ CELLSPACING='0’' BGCOLOR='white’><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’><TABLE BORDER='0’
CELLBORDER="1" CELLSPACING=’0’><TR><TD>3</TD><TD>1</TD><TD>2</TD></TR><TR><TD></TD><TD>4</TD><TD>5</TD></TR><TR><TD>6</TD><TD>7</TD>
<TD>8</TD></TR></TABLE></FONT></TD></TR></TABLE></TD></TR></TABLE>>, fillcolor=yellow,height=0.2];

-1986387647
[label=<<TABLE BORDER='®’ CELLBORDER='1’ CELLPADDING='2’ CELLSPACING=’®’ BGCOLOR='orangered’><TR><TD><FONT FACE=’monospace’ POINT-SIZE='8’>
depth = 1.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’'>g = 1.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’
POINT-SIZE='8’>h = 2.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’'>f = 3.0</FONT></TD></TR><TR><TD><TABLE BORDER='0’
CELLBORDER="1" CELLPADDING='2’ CELLSPACING='0’ BGCOLOR='white’><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’><TABLE BORDER='Q’
CELLBORDER="1" CELLSPACING="0’><TR><TD>3</TD><TD>1</TD><TD>2</TD></TR><TR><TD>4</TD><TD></TD><TD>5</TD></TR><TR><TD>6</TD><TD>7</TD>
<TD>8</TD></TR></TABLE></FONT></TD></TR></TABLE></TD></TR></TABLE>>, fillcolor=orangered,height=0.06];

-1925441027
[label=<<TABLE BORDER='®’ CELLBORDER='1’ CELLPADDING='2’ CELLSPACING="0’ BGCOLOR='orangered’><TR><TD><FONT FACE='monospace’ POINT-SIZE='8'>
depth = 1.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8'>g = 1.0</FONT></TD></TR><TR><TD><FONT FACE=’monospace’
POINT-SIZE='8’>h = 2.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’>f = 3.0</FONT></TD></TR><TR><TD><TABLE BORDER=’0’
CELLBORDER="1" CELLPADDING="2’ CELLSPACING='0’' BGCOLOR='white’><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’><TABLE BORDER='0’
CELLBORDER="1" CELLSPACING="0’><TR><TD>3</TD><TD>1</TD><TD>2</TD></TR><TR><TD>6</TD><TD>4</TD><TD>5</TD></TR><TR><TD></TD><TD>7</TD>
<TD>8</TD></TR></TABLE></FONT></TD></TR></TABLE></TD></TR></TABLE>>, fillcolor=orangered,height=0.06] ;

-883926621
[label=<<TABLE BORDER='®’ CELLBORDER='1’ CELLPADDING='2’ CELLSPACING='®’ BGCOLOR='steelblue’><TR><TD><FONT FACE=’'monospace’ POINT-SIZE='8’>
depth = 1.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’'>g = 1.0</FONT></TD></TR><TR><TD><FONT FACE='monospace’
POINT-SIZE="8’>h = 0.0</FONT></TD></TR><TR><TD><FONT FACE=’'monospace’ POINT-SIZE='8’'>f = 1.0</FONT></TD></TR><TR><TD><TABLE BORDER='0’
CELLBORDER="1" CELLPADDING="2’ CELLSPACING='0’ BGCOLOR='white’><TR><TD><FONT FACE='monospace’ POINT-SIZE='8’><TABLE BORDER='Q’
CELLBORDER="1" CELLSPACING="0’><TR><TD></TD><TD>1</TD><TD>2</TD></TR><TR><TD>3</TD><TD>4</TD><TD>5</TD></TR><TR><TD>6</TD><TD>7</TD>
<TD>8</TD></TR></TABLE></FONT></TD></TR></TABLE></TD></TR></TABLE>>, fillcolor=steelblue,height=0.4];

-2097210167 -> -1986387647
[label=<<FONT FACE='monospace’ POINT-SIZE=’'6’>&nbsp;R</FONT>>,arrowsize=0.4];

-2097210167 -> -1925441027
[label=<<FONT FACE=’'monospace’ POINT-SIZE=’'6’>&nbsp;D</FONT>>,arrowsize=0.4];

-2097210167 -> -883926621
[label=<<FONT FACE=’'monospace’ POINT-SIZE=’'6’>&nbsp;U</FONT>>,arrowsize=0.4];
}

depth = 0.0
g =20.0
h=1.0
f=1.0
311
6 8

31112 311(2 1|12
4 5 6 14]|5 31415
6178 718 67]8

Figure 5.2: Graphviz code generated automatically by SaC for a simple sliding puzzle search
(above) and its visualization rendered out (below).
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By default, the Graphviz engine renders its outputs according to the so called dot layouter. For
search trees, this results in natural top-down visualizations where successive rows correspond to
successive depth levels and the initial state is at the top. For star-like visualizations, with the initial
state in the middle, the neato layouter should be used. The suitable command-line invocation for
that purpose could look like this:

D:\>dot -Tpdf output.dot -Kneato -o d:\output.pdf

For more information about available options, switches and command-line Graphviz invocations
the reader is addressed to the documentation, in particular to: http://www.graphviz.org/doc/
info/command.html.

As regards the displayed contents of nodes, a SaC user can affect those by providing his state
class with an implementation of the toGraphvizLabel () method. This method is visible and can be
overriden because the base interface in SaC — sac.State —extendsa sac.graphviz.Graphvizable
interface with that particular method. By default, the toGraphvizLabel () method returns the iden-
tifier of a state object. Therefore, when elegant visualizations are intended, a more meaningful
state representation should be implemented. Please note, that Graphviz allows to use HTML
language for that purpose. Thus, a programmer can construct a suitable HTML string within
his implementation of the toGraphvizLabel () method. As an example, below we show a code
excerpt for that purpose taken from the sliding puzzle class.

@Override
public String toGraphvizLabel () {
StringBuilder builder = new StringBuilder();
builder. append ("<FONT_FACE="monospace ' .POINT-SIZE="8"> <TABLE_.BORDER= "0 ' .CELLBORDER= "1’ ..
CELLSPACING="0">") ;

int k = 0;
for (int i = 0; i < n; i++) {
builder.append("<TR>");
for (int j = 0; j < n; j++) {
builder.append("<ITD>" + ((board[k] == 0) ? "" : board[k]) + "</TD>");
k++;
}
builder.append (" </TR>");
}
builder.append (" </TABLE></FONT>") ;

return builder.toString(Q);

5.2 Statistics and charts for batch experiments

SaC allows to conveniently carry out batch experiments. What do we mean by that? Imagine
a compact piece of code, containing a number of loops, that iterate for example over: mulitple
random instances of a certain problem, multiple search algorithms, multiple heuristic functions,
and different data structures involved; and in each iteration an execution of the search procedure
for given settings is performed. Once such a collection of experiments is registered, one would


http://www.graphviz.org/doc/info/command.html
http://www.graphviz.org/doc/info/command.html
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like to easily extract some statistics out of it — for example: an avarage solution path length
per an algorithm, a total of visited states per a heuristic, an avarage duration time per particular
combinations of an algorithm and a data structure, a variance in the size of the transposition table,
and so forth. The object-oriented design of SaC allows to do so, see the example below.

public static void main(String[] args) throws Exception {
System.out.println("Starting ...");
long t1 = System.currentTimeMillis();

Stats stats = new Stats();

// loop over random sliding puzzle problems

for (int i = 0; i < 100; i++) {
SlidingPuzzle puzzle = new SlidingPuzzle((byte) 3);
puzzle.shuffle((Math.random() > 0.5) ? 1000 : 1001); // shuffling

// initial solution by A* so that optimal path length is known for further statistics
AStar astar = new AStar(new SlidingPuzzle(puzzle));

astar.execute();

int optimalPathLength = astar.getSolutions().get(0).getPath().size();

// loop over algorithms
GraphSearchAlgorithm[] algorithms = { new BestFirstSearch(), new AStar() };
for (GraphSearchAlgorithm algorithm : algorithms) {

// loop over heuristics
StateFunction[] heurs = { new HFunctionManhattan(), new HFunctionLinearConflicts() };
for (StateFunction h : heurs) {

// loop over different open set implementations
Class[] openSetClasses = { OpenSetAsPriorityQueue.class,
OpenSetAsPriorityQueueFastContains.class,
OpenSetAsPriorityQueueFastContainsFastReplace.class };
for (Class openSetClass : openSetClasses) {

algorithm.setInitial (new SlidingPuzzle(puzzle));
SlidingPuzzle.setHFunction(h);

GraphSearchConfigurator configurator = new GraphSearchConfigurator();
configurator.setOpenSetClassName (openSetClass.getName());
algorithm.setConfigurator(configurator);

// search
algorithm.execute();

// register current single run in stats object

stats.addEntries(algorithm, i, algorithm.getClass(), h.getClass(),
openSetClass, optimalPathLength);

3

long t2 = System.currentTimeMillis();
System.out.println("Experiment.total_.time.[s]:." + (0.001 * (t2 - t1)));

// charts based on collected statistics to be produced here
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The example represents experimantations on random sliding puzzle problems, in the 3 x 3 — 1
variant. It involves four nested loops in which varied are: problems, algorithms, heuristics, and
data structures implementing the Open set. An important element to notice in the code is the
sac.stats.Stats object. The role of this object is to register singular experiments and then to
produce the wanted statistics out of it.

As far as registration of experiments is concerned, the usage is simple and convenient. One
instatiates a sac.stats.Stats object at the very start and then in the middle of all loops one
registers results of a particular execution by a single line of code, calling the addEntries(...)
method. The full signature of that method is as follows.

public void addEntries(SearchAlgorithm algorithm, Object... multiIndex) {

}

As one can see, the method requires a reference to the search algorithm (that finished its execution)
as the first argument. The second argument, named mul tiIndex, is passed by the ellipsis program-
ming mechanism — so in fact it can by an arbitrary number of arguments that together describe the
settings for a given experiment. It can be explained that on the low level SaC uses that multiIndex
as a key to a large hash map that stores results of experiments inside the sac.stats.Stats object.
If a reader is interested in such low level details we address him to the source code of the library.
The exemplary lines of code shown below are the sequel to the previous batch experiment.
They demonstrate how one can extract some wanted statistics (i.e. their numeric values) once all
loops are finished. We encourage the reader to try to guess what the lines are meant to calculate.

stats.mean(StatsCategory.GRAPH_SEARCH_PATH_LENGTH. toString(), null, AStar.class, null, null, null

)
stats.mean(StatsCategory.GRAPH_SEARCH_PATH_LENGTH.toString(), null, BestFirstSearch.class, null,
null, null);

stats.mean(StatsCategory.GRAPH_SEARCH_CLOSED_STATES.toString(), null, null, HFunctionManhattan.
class, null, null);
stats.variance(StatsCategory.GRAPH_SEARCH_CLOSED_STATES.toString(), null, null,
HFunctionManhattan.class, null, null);
stats.mean(StatsCategory.GRAPH_SEARCH_CLOSED_STATES.toString(), null, null,
HFunctionLinearConflicts.class, null, null);
stats.variance(StatsCategory.GRAPH_SEARCH_CLOSED_STATES.toString(), null, null,
HFunctionLinearConflicts.class, null, null);
stats.max(StatsCategory.GRAPH_SEARCH_DURATION_TIME.toString(), null, AStar.class, null,
OpenSetAsPriorityQueue.class);
stats.max(StatsCategory.GRAPH_SEARCH_DURATION_TIME.toString(), null, AStar.class, null,
OpenSetAsPriorityQueueFastContainsFastReplace.class);

Well, the lines from above, if augmented with suitable System.out.println(...) instructions
and descriptions, could result in the following output to the console:

Mean solution path length for A*: 23.2

Mean solution path length for Best-first-search: 57.45

Mean number of closed states for Manhattan heuristics: 616.125

Variance of number of closed states for Manhattan heuristics: 533885.259375
Mean number of closed states for Manhattan + LC heuristics: 335.325

Variance of number of closed states for Manhattan + LC heuristics: 196093.519375
Max duration time for A* and standard open set [ms]: 120.0

Max duration time for A* and FCFR open set [ms]: 80.0
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As one can figure out the extraction of statitics from the stats object is based somehow on a
suitable usage of the null symbol. The wanted aggregation operation (mean, variance, max, min)
should be called on the stats object and two elements should be specified: (1) with respect to
which quantity the aggregation should be taken, (2) what is the multiindex pattern to aggregate
over — this part involves the usage of nulls. The measured quantities at disposal are defined by
the sac.stats.StatsCategory enumeration:

public enum StatsCategory {
GRAPH_SEARCH_DURATION_TIME,
GRAPH_SEARCH_CLOSED_STATES,
GRAPH_SEARCH_OPEN_STATES,
GRAPH_SEARCH_SOLUTIONS,
GRAPH_SEARCH_PATH_LENGTH,
GRAPH_SEARCH_PATH_G,
GAME_SEARCH_DURATION_TIME,
GAME_SEARCH_CLOSED_STATES,
GAME_SEARCH_TRANSPOSITION_TABLE_SIZE,
GAME_SEARCH_TRANSPOSITION_TABLE_USES,
GAME_SEARCH_REFUTATION_TABLE_SIZE,
GAME_SEARCH_REFUTATION_TABLE_USES, GAME_SEARCH_DEPTH_REACHED;

As regards the multiindex pattern, it is, again, specified by the ellipsis mechanism. So, the
programmer is supposed to give a sequence of objects according to the same scheme (order) that
was used when experiments were being registered. The mentioned trick at this stage is that any
position within the multiindex can be either fixed or replaced by a null symbol, which is intended
to mean ‘any’. In other words a particular arrangement of nulls defines the scope (range) for the
aggregation. For example, the two last printouts to the screen in the former example involve a
fixed algorithm and a fixed type of Open set, whereas all other parameters are free to vary.

Additionally, SaC offers a possibility to automatically generate plots out of statitics. This
functionality is underneath based on the jFreeChart library. Let us start by an example of a bar
chart generated using the statistics. We believe the code below is self-explanatory and the resulting
jpeg file with the chart is presented in the Fig.

'

StatsBarChart statsBarChartl = new StatsBarChart(stats,
and_heuristics", "time.[ms]");
statsBarChartl.setValue("LC", "Ax", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME. toString(), null, AStar.class,
HFunctionLinearConflicts.class, null, null);
statsBarChartl.setValue("™", "Ax", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME.toString(), null, AStar.class,
HFunctionManhattan.class, null, null);
statsBarChartl.setValue("LC", "BFS", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME. toString(), null, BestFirstSearch.class,
HFunctionLinearConflicts.class, null, null);
statsBarChartl.setValue("™", "BFS", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME.toString(), null, BestFirstSearch.class,
HFunctionManhattan.class, null, null);
statsBarChartl.saveAsJPEG("./sliding_puzzle_duration.jpg");

'sliding.puzzle.—_.duration", "algorithm.
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sliding puzzle - duration
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Figure 5.3: Bar chart generated by SaC from a batch experiment over random sliding puzzles:
duration times for two algorithms (groups) and two heuristics (subgroups).

The code below produces three more exemplary plots: one bar chart and two x-y plots, shown

in figures[5.4, [5.5/and 5.6 respectively.

// sliding puzzle - duration over open sets (bar chart)
StatsBarChart statsBarChart2 = new StatsBarChart(stats, "sliding.puzzle.—_duration", "open.set.
and.algorithm", "time.[ms]");
statsBarChart2.setValue("A+", "PQ", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME.toString(), null, AStar.class, null,
OpenSetAsPriorityQueue.class, null);
statsBarChart2.setValue("BFS", "PQ", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME. toString(), null, BestFirstSearch.class, null,
OpenSetAsPriorityQueue.class, null);
statsBarChart2.setValue("A*", "PQFC", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME. toString(), null, AStar.class, null,
OpenSetAsPriorityQueueFastContains.class, null);
statsBarChart2.setValue ("BFS", "PQFC", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME.toString(), null, BestFirstSearch.class, null,
OpenSetAsPriorityQueueFastContains.class, null);
statsBarChart2.setValue("A*", "PQFCFR", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME.toString(), null, AStar.class, null,
OpenSetAsPriorityQueueFastContainsFastReplace.class, null);
statsBarChart2.setValue ("BFS", "PQFCFR", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_DURATION_TIME. toString(), null, BestFirstSearch.class,
null, OpenSetAsPriorityQueueFastContainsFastReplace.class, null);
statsBarChart2.saveAsJPEG("./sliding_puzzle_duration_2.jpg");

// sliding puzzle - closed states distribution over optimal path length (xy chart)
StatsXYChart statsXYChartl = new StatsXYChart(stats, "sliding.puzzle.—.closed.states.as.path.
length._.grows", "optimal.path.length", "closed.states");
statsXYChartl.addSeries("A*_LC", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_CLOSED_STATES. toString(), 4, null, AStar.class,
HFunctionLinearConflicts.class, null, null);
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statsXYChartl.addSeries("A* M", StatsOperationType.MEAN, StatsCategory.GRAPH_SEARCH_CLOSED_STATES
.toString(), 4, null, AStar.class,
HFunctionManhattan.class, null, null);
statsXYChartl.addSeries("BFS_LC", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_CLOSED_STATES. toString(), 4, null, BestFirstSearch.class,
HFunctionLinearConflicts.class, null, null);
statsXYChartl.addSeries("BFS_M", StatsOperationType.MEAN, StatsCategory.
GRAPH_SEARCH_CLOSED_STATES. toString(), 4, null, BestFirstSearch.class,
HFunctionManhattan.class, null, null);
statsXYChartl.saveAsJPEG("./sliding_puzzle_closed_states.jpg");

// sliding puzzle - found path length over optimal path length (xy chart)
StatsXYChart statsXYChart2 = new StatsXYChart(stats, "sliding.puzzle.—-_found.path.length.over.
optimal_.path_.length", "optimal.path_.length",
"found.path.length");
statsXYChart2.addSeries("A*_any", StatsOperationType.MEAN, StatsCategory.GRAPH_SEARCH_PATH_LENGTH
.toString(), 4, null, AStar.class, null, null, null);
statsXYChart2.addSeries ("BFS_LC", StatsOperationType.MEAN, StatsCategory.GRAPH_SEARCH_PATH_LENGTH
.toString(), 4, null, BestFirstSearch.class,
HFunctionLinearConflicts.class, null, null);
statsXYChart2.addSeries("BFS_M", StatsOperationType.MEAN, StatsCategory.GRAPH_SEARCH_PATH_LENGTH.
toString(), 4, null, BestFirstSearch.class,
HFunctionManhattan.class, null, null);
statsXYChart2.saveAsJPEG("./sliding_puzzle_path_lengths.jpg");
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Figure 5.4: Bar chart generated by SaC from a batch experiment over random sliding puzzles:
duration times for three data structures (groups) and two algorithms (subgroups).
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sliding puzzle - closed states as path length grows
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Figure 5.5: x-y plot generated by SaC from a batch experiment over random sliding puzzles:
number of closed (visited) states as a function of solution path length, for different algorithms and

heuristics.
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Figure 5.6: x-y plot generated by SaC from a batch experiment over random sliding puzzles:
discovered path lengths vs actual optimal path lengh, for different algorithms and heuristics.
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5.3 Graph search monitors

For some sufficiently hard graph search problems, the search procedure may take minutes or even
hours. Often, it is impossible for the user to give even a rough estimate on the time duration
needed by an algorithm, prior to its execution. In such situations the user is typically interested in
monitoring the procedure, i.e. observing its progress and quantities involved. SaC’s API allows
to do so.

Within the sac.graph.GraphSearchConfiguration object, there are three options related to
monitors: monitorOn, monitorClassName, monitorRefreshTime. They can be modified either di-
rectly by suitable setters or via a properties file. The first option —monitorOn — serves as a switch,
and is by default set to false. It means no monitoring is wanted. Setting this option to true, re-
leases the remaining options. The second option —monitorClassName —is expected to be set with
a name of a particular search monitor class. There are two ready-made monitor classes within
SaC: sac.graph.ConsoleGraphSearchMonitor and sac.graph.GraphicalGraphSearchMonitor.
Note however, that new custom classes can be developped (e.g. logging the progress to a file or a
database, etc.) aslong as they extend the base abstract class called: sac.graph.GraphSearchMonitor.
Finally, the third option — monitorRefreshTime — specifies the time period in milliseconds after
which the monitor is supposed to refresh its output for the user.

The fragment below shows an example of a console monitor configured for a particular 4 x 4
sliding puzzle problem. The refresh period is set to 1000 ms, so the monitor prints out a summary
of the current progress to the console (every second) by invoking the printCurrentSummary ()
method.

QN U= LN~

=
= O O N

GraphSearchConfigurator configurator = new GraphSearchConfigurator();
configurator.setMonitorOn(true);

configurator.setMonitorClassName (ConsoleGraphSearchMonitor.class.getName());
configurator.setMonitorRefreshTime (1000) ;

SlidingPuzzle puzzle = new SlidingPuzzle(new byte[] {6, 3, 10, 2, 1, 8, 9, 6, 12, 11, 4, 7, 14,
5, 15, 133});
System.out.println(puzzle);

GraphSearchAlgorithm algorithm = new AStar(puzzle, configurator);
algorithm.execute();
System.out.println("Done.");

| 14| 5 15| 13 |

Initializing sac.graph.ConsoleGraphSearchMonitor with params: algorithm = sac.graph.AStar, refreshTime = 1000 ms.
Starting sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary(). ..
[SaC] Time: 0.0 s.

[SaC] Solutions so far: 0.

[SaC] Closed states: 1.

[SaC] Open states: 0.

[SaC] Best state’s h: 32.0.

[SaC] Best state’s f: 32.0.

[SaC] Best state’s depth: 0.0.

[SaC] Current state’s h: 32.0.
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[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
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[SaC]
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[SaC]
[SaC]
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[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
[SaC]
Done.

Current state’s f: 32.0.
Current state’s depth: 0.0.
Free memory: 42615384

Used memory: 128516096

Max memory: 1907032064

Time: 1.012 s.

Solutions so far: 0.
Closed states: 75108.
Open states: 70277.

Best state’s h: 4.0.

Best state’s f: 40.0.
Best state’s depth: 36.0.
Current state’s h: 21.0.
Current state’s f: 42.0.
Current state’s depth: 21.0.
Free memory: 100827528
Used memory: 184942592
Max memory: 1907032064

*** Done with sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary() .
* Starting sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary()...

Time: 2.174 s.

Solutions so far: 0.
Closed states: 121525.
Open states: 111129.

Best state’s h: 3.0.

Best state’s f: 42.0.
Best state’s depth: 39.0.
Current state’s h: 27.0.
Current state’s f: 44.0.
Current state’s depth: 17.0.
Free memory: 207060480
Used memory: 313262080
Max memory: 1907032064

*** Done with sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary() .
*** Starting sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary()...

Time: 3.245 s.

Solutions so far: 0.
Closed states: 233229.
Open states: 215991.

Best state’s h: 3.0.

Best state’s f: 42.0.
Best state’s depth: 39.0.
Current state’s h: 22.0.
Current state’s f: 44.0.
Current state’s depth: 22.0.
Free memory: 193846936
Used memory: 362020864
Max memory: 1907032064

**% Done with sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary() .
**% Starting sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary()...

Time: 4.246 s.

Solutions so far: 1.
Closed states: 282505.
Open states: 258138.

Best state’s h: 0.0.

Best state’s f: 44.0.
Best state’s depth: 44.0.
Current state’s h: 0.0.
Current state’s f: 44.0.
Current state’s depth: 44.0.
Free memory: 137477520
Used memory: 362020864
Max memory: 1907032064

*%* Done with sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary() .

* Done with sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary() .
* Starting sac.graph.ConsoleGraphSearchMonitor.printCurrentSummary(). ..

166
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Fig.[5.7/depicts a visualizaiton being generated by the sac . graph. GraphicalGraphSearchMoni tor
for the same sliding puzzle problem. This time the refresh period is set to 100 ms, so the reporting
points are laidy more densly than before. An interesting gap can be seen in between the time mo-
ments of 1.5s and 2.3s. The gap can be explained by exhausted memory needed for the hash map
underlying the Closed set and the JVM taking time to allocate new enlarged fragment of memory.
By doing so, the JVM sets the monitor thread aside.

GRAPHICAL GRAPH SEARCH MONITOR
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Figure 5.7: A screenshot from a running graph search monitor.
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Chapter 6

Appendices

6.1 Implementation of state abstraction

package sac;

import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

e
* Abstract partial implementation of State interface.
*/

public abstract class StateImpl implements State {

/

Identifier for this state.
/
protected Identifier identifier = null;

/
* Reference to this state’s parent.
1Y

protected State parent = null;

Vs
“* List of references to this state’s children.
*/

protected List<? extends State> children = null;

/

Depth of this state (number of parent states above it).
1Y
protected double depth = 0;

/
* The heuristics - estimated distance to the solution state. Remains null until the first call of getH(Q).
)

protected Double h = null;

/

Name of the move that led to generating this state.
1Y
protected String moveName;

/

Default h function (returns 0).
5/
protected static StateFunction hFunction;
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47 o

48 * Constructor for this abstract class. Sets reference to parent to null, and initializes children as an empty list
49 * (linked list).

50 */

51 public StateImpl() {

52 // construction of identifier is postponed until first call of getIdentifier()
53 this.parent = null;

54 this.children = new LinkedList<State>();
55 }

56

57 /*

58 * (non-Javadoc)

59 *

60 * @see sac.State#getIdentifier()

61 =/

62 @Override

63 public final Identifier getIdentifier() {
64 if (identifier == null) { // first call for identifier
65 // at this point toString() and hashCode() methods for classes extending StateImpl are
66 // ready to be used,

67 // identifier will call the suitable method once (on construction) and memorize the
68 // result

69 identifier = new Identifier(this);
70 }

71 return identifier;

72 }

73

74 /*

75 * (non-Javadoc)

76 *

77 * @see sac.State#refreshIdentifier()

78 =/

79 @Override

80 public final void refreshIdentifier() {

81 identifier = nmew Identifier(this);

82 }

83

84 /*

85 * (non-Javadoc)

86 *

87 * @see sac.State#getParent ()

88 */

89 @Override

90 public State getParent() {

91 return parent;

92 }

93

94 /*

95 * (non-Javadoc)

96 *

97 * @see sac.State#setParent(sac.State)

98 */

99 @Override
100 public final void setParent(State parent) {
101 this.parent = parent;
102 }
103
104 /*
105 * (non-Javadoc)
106 *
107 * @see sac.State#setDepth(double)
108 */
109 @Override
110 public final void setDepth(double depth) {
111 this.depth = depth;
112 }
113
114 /*
115 * (non-Javadoc)
116 *
117 * @see sac.State#getChildren()
118 */
119 @Override
120 public List<? extends State> getChildren() {
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return children;

}

J
* (non-Javadoc)

* @see sac.State#getDepth()
£
@Override
public final double getDepth() {
return depth;
}

Vs

“ (non-Javadoc)

* @see sac.State#getPath()
/
@Override
public List<? extends State> getPath() {
List<State> path = new LinkedList<State>(Q);
State temp = this;
path.add(temp);
while (temp.getParent() != null) {
temp = temp.getParent();
path.add(temp);
}
Collections.reverse(path);
return path;
}

J*

* (non-Javadoc)

* @see sac.State#getMovesAlongPath()
*/
@Override
public List<String> getMovesAlongPath() {
List<String> moves = new LinkedList<String>Q);
List<? extends State> path = getPath();
for (State state : path) {
if (state.getParent() == null) continue;
moves.add(state.getMoveName ());
}
return moves;

}

J*

* (non-Javadoc)

* @see java.lang.Object#equals(java.lang.Object)
*/
@Override
public boolean equals(Object otherState) {
State otherState2 = (State) otherState;
return getIdentifier().equals(otherState2.getIdentifier());

* (non-Javadoc)

* @see java.lang.Comparable#compareTo(java.lang.Object)
)
@Override
public int compareTo(State otherState) {
return getIdentifier().compareTo(otherState.getIdentifier());
}

JEx

Sets new h function.

“ @param hFunction to best
y
public static final void setHFunction(StateFunction hFunction) {
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StateImpl.hFunction = hFunction;
}

J
* (non-Javadoc)

* @see sac.State#getH()
£
@Override
public final double getH() {
if (h == null)
h = Double.valueOf(hFunction.calculate(this));
return h;
}

/%

* (non-Javadoc)

* @see sac.State#setH(Double)

*/
@Override
public final void setH(Double h) {
this.h = h;
}
J*

* (non-Javadoc)

* @see sac.State#refreshH()

*/
@Override
public final void refreshH() {
h = null;
hFunction.calculate(this);
}
Ve

* (non-Javadoc)

* @see sac.State#refresh()
Y4
@Override
public void refresh() {
refreshIdentifier();
refreshHQ);
}

J*

* (non-Javadoc)

* @see sac.State#getMoveName ()

*/
@Override
public final String getMoveName() {
return (moveName != null) ? moveName : getIdentifier().toStringQ);
}
J*

“ (non-Javadoc)

* @see sac.State#setMoveName (java.lang.String)
*/
@Override
public final void setMoveName(String moveName) {
this.moveName = moveName;

}

J
* (non-Javadoc)

* @see sac.graphviz.Graphvizable#toGraphvizLabel ()
)

@Override

public String toGraphvizLabel() {
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return getIdentifier().toString(); // default content for visualization - identifier

}
static {

hFunction = new StateFunction();
}

174

6.2 Implementation of graph state abstraction

package sac.graph;
import java.util.List;
import sac.State;

import sac.StateFunction;
import sac.StateImpl;

/

*/
public abstract class GraphStateImpl extends StateImpl implements GraphState {

The exact distance from the initial state.
LY
protected Double g = 0.0;

Vi

5/
protected Double f = null;

The sum of g and h. Remains null until the first call of getF().

JEE

Default g function (returns parent’s g + 1).
*/
protected static StateFunction gFunction;

Vi
“ Default implementation of the true cost function (g function). Returns parent’s g (if exists) plus one.
* for problems where the number of moves is to be minimized.
*/
public static class GFunction extends StateFunction {
J*
* (non-Javadoc)
@see sac.StateFunction#calculate(sac.State)
5/
@Override
public double calculate(State state) {
return (state.getParent() == null) ? 0.0 : ((GraphState) state.getParent()).getG() + 1.0;
}
}

Sets new g function.

“ @param gFunction to be set

/
public final static void setGFunction(StateFunction gFunction) {
GraphStateImpl.gFunction = gFunction;

Creates a new instance of graph state.

/
public GraphStateImpl() {
super () ;

Abstract partial implementation of GraphState interface. User’s graph state classes should extend this class.

Suitable
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}

J*

* (non-Javadoc)

* @see sac.GraphState#getParent ()

*/
@Override
public final GraphState getParent() {

return (parent == null) ? null : (GraphState) parent;

}
J*

* (non-Javadoc)

* @see sac.GraphState#getChildren()

*/
@Override

@SuppressWarnings ("unchecked")

public final List<GraphState> getChildren() {
return (List<GraphState>) children;

}

Vi

* (non-Javadoc)

* @see sac.GraphState#getPath()
£/
@override
@SuppressWarnings ("unchecked")
public final List<GraphState> getPath() {
return (List<GraphState>) super.getPath();
}

J*

* (non-Javadoc)

* @see sac.GraphState#getG()
*/
@Override
public final double getG() {
if (g == null)
g = Double.valueOf(gFunction.calculate(this));
return g;

* (non-Javadoc)

“ @see sac.GraphState#getF()
*/
@Override
public final double getF() {
if (f == null)
f = Double.valueOf(getG() + getH());
return f;

* (non-Javadoc)

* @see sac.graph.GraphState#refreshCosts ()
/
@Override
public final void refreshCosts() {
g = Double.valueOf(gFunction.calculate(this));
h = Double.valueOf(hFunction.calculate(this));
f = Double.valueOf(getG() + getH();

}
static {

gFunction = new GFunction();
}
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6.3 Implementation of game state abstraction

package sac.game;

import java.util.LinkedList;
import java.util.List;

import sac.StateImpl;

/

Abstract partial implementation of GameState interface. User game state classes should extend this class.

*/
public abstract class GameStateImpl extends StateImpl implements GameState {
e
* Boolean value indicating whether it is the maximizing player turn to play now.
1Y

protected boolean maximizingTurnNow = true;

Vi

List of moves along principal variation.

*/

protected List<String> movesAlongPrincipalVariation = null;

Boolean value indicating whether this state instance is flagged as visited during search. It is possible that
* copies of the same state in different places of search tree will have different ’'visited’ flags. Some of copies
* might be generated but cut off, or read from the transposition table. This flag is memorized only for informative
* purposes (in particular for Graphviz functionality).
)
protected boolean visited = false;

Vi
* Boolean value indicating whether this state instance is flagged as read (evaluated) from transposition table. It

* is possible that copies of the same state in different places of search tree will have different

* ’readFromTranspositionTable’ flags. This flag is memorized only for informative purposes (in particular for

Graphviz functionality).

5/

protected boolean readFromTranspositionTable = false;

s
“ Constructor for this abstract class. Initializes list for moves along principal variation as an empty list
“ (linked 1list).
/
public GameStateImpl() {
movesAlongPrincipalVariation = new LinkedList<String>(Q);

}
Vi
“ (non-Javadoc)
* @see sac.game.GameState#getParent ()
*/
@Override
public GameState getParent() {
return (parent == null) ? null : (GameState) parent;
}
Vi
* (non-Javadoc)
* @see sac.game.GameState#getChildren()
)
@Override

@SuppressWarnings ("unchecked")
public final List<GameState> getChildren() {
return (List<GameState>) children;

/%

* (non-Javadoc)
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* @see sac.game.GameState#getPath()
*/
@Override
@SuppressWarnings ("unchecked")
public final List<GameState> getPath() {
return (List<GameState>) super.getPath();
}

J*
“ (non-Javadoc)

* @see sac.game.GameState#isMaximizingTurnNow ()
LY
@Override
public final boolean isMaximizingTurnNow() {
return maximizingTurnNow;

}

Ve
* (non-Javadoc)

* @see sac.game.GameState#setMaximizingTurnNow(boolean)

)

@Override

public final void setMaximizingTurnNow(boolean maximizingTurnNow) {
this.maximizingTurnNow = maximizingTurnNow;

}

Vi

* (non-Javadoc)

* @see sac.game.GameState#isQuiet ()
*/
@Override
public boolean isQuiet() {
return true; // default implementation
}

Vi

“ (non-Javadoc)

“ @see sac.game.GameState#isVisited()
£/
@Override
public final boolean isVisited() {
return visited;

}

/%

* (non-Javadoc)

* @see sac.game.GameState#setVisited()
*/
@Override
public final void setVisited(boolean visited) {
this.visited = visited;

}

J*

* (non-Javadoc)

* @see sac.game.GameState#isReadFromTranspositionTable ()
*/
@Override
public boolean isReadFromTranspositionTable() {
return readFromTranspositionTable;

}

G
* (non-Javadoc)

* @see sac.game.GameState#setReadFromTranspositionTable ()

177
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*/
@Override
public void setReadFromTranspositionTable(boolean readFromTranspositionTable) {
this.readFromTranspositionTable = readFromTranspositionTable;

}

J*

* (non-Javadoc)

* @see sac.game.GameState#getMovesAlongPrincipalVariation ()
*/
@Override
public final List<String> getMovesAlongPrincipalVariation() {
return movesAlongPrincipalVariation;

}

@Override

public boolean isNonWinTerminal() {
return false;

}

178

6.4 Full code of general (abstract) game search algorithm

package sac.game;

import java.lang.reflect.Constructor;
import java.util.Arraylist;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import sac.Identifier;
import sac.SearchAlgorithm;

Abstract game search algorithm. Meant to be extended by actual algorithms e.g.: MIN-MAX, alpha-beta cut-offs,

*/
public abstract class GameSearchAlgorithm extends SearchAlgorithm {

Vazd

Reference to initial state.
)
protected GameState initial = null;

/

Reference to currently examined state.
1Y
protected GameState current = null;

/

Map of discovered scores for moves.
/

protected Map<String, Double> movesScores = null;

Vazd
* Transposition table.
LY

protected TranspositionTable transpositionTable = null;

/

Refutation table.
)
protected RefutationTable refutationTable = null;

/

Graph search configurator object.

£/

Scout.
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protected GameSearchConfigurator configurator = null;

* Number of closed states (= number of calls of methods evaluateMaxState(), evaluateMinState), since last reset().
*/
protected int closedCount = 0;

/

Maximum depth that was reached in the search (owing to quiescence) since last reset().
*/
protected double depthReached = 0.0;

JEE

Boolean flag stating if stop was forced (e.g. from an outer thread).

/
protected boolean stopForced = false;

Creates new instance of game search algorithm.

* @param initial reference to initial state
@param configurator reference to configurator object

*/
public GameSearchAlgorithm(GameState initial, GameSearchConfigurator configurator) {
this.configurator = (configurator != null) ? configurator : new GameSearchConfigurator();
this.initial = initial;
this.movesScores = new HashMap<String, Double>();
reset();
}
Vi
* (non-Javadoc)
* @see sac.SearchAlgorithm#execute ()
*/
@Override
public final void execute() {
reset();
startTime = System.currentTimeMillis();
doExecute();
endTime = System.currentTimeMillis();
}
Vi

Actual execution of search algorithm invoked from inside of execute() method.
/
protected void doExecute() {
Double gameValue = null;
if (initial.isMaximizingTurnNow())
gameValue = evaluateMaxState(initial, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 0.0, configurator.
getDepthLimit ());
else
gameValue = evaluateMinState(initial, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 0.0, configurator.
getDepthLimit());
if (configurator.isTranspositionTableOn())
transpositionTable.putOrUpdate(initial, gameValue, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
current = null;

* Wrapping method around doEvaluateMaxState(...).

@param gameState given game state
@param alpha lower bound on game value known for given game state
* @param beta upper bound on game value known for given game state
@param depth current depth
@param depthLimit depth limit
* @return calculated game value (or null if time limit is reached)
*/
protected final Double evaluateMaxState(GameState gameState, double alpha, double beta, double depth, double depthLimit)
// time limit check
if ((stopForced) || (configurator.getTimeLimit() < Long.MAX_VALUE)) {

~
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117 long currentTime = System.currentTimeMillis();

118 if (currentTime - startTime > configurator.getTimeLimit()) {

119 endTime = System.currentTimeMillis();

120 return null;

121 }

122 }

123 closedCount++;

124 current = gameState;

125 gameState.setVisited(true);

126 return doEvaluateMaxState(gameState, alpha, beta, depth, depthLimit);
127 }

128

129

130 * Wrapping method around doEvaluateMinState(...).

131 *

132 * @param gameState given game state

133 * @param alpha lower bound on game value known for given game state

134 * @param beta upper bound on game value known for given game state

135 * @param depth current depth

136 * @param depthLimit depth limit

137 * @return calculated game value (or null if time limit is reached)

138 =/

139 protected final Double evaluateMinState(GameState gameState, double alpha, double beta, double depth, double depthLimit) {
140 // time limit check

141 if ((stopForced) || (configurator.getTimeLimit() < Long.MAX_VALUE)) {
142 long currentTime = System.currentTimeMillis();

143 if (currentTime - startTime > configurator.getTimeLimit()) {

144 endTime = System.currentTimeMillis();

145 return null;

146 }

147 }

148 closedCount++;

149 current = gameState;

150 gameState.setVisited(true);

151 return doEvaluateMinState(gameState, alpha, beta, depth, depthLimit);
152 }

153

154

155 * Evaluates given game state associated with the maximizing player.

156

157 * @param gameState given game state

158 * @param alpha lower bound on game value known for given game state

159 * @param beta upper bound on game value known for given game state

160 * @param depth current depth

161 * @param depthLimit depth limit

162 * @return calculated game value (or null if time limit is reached)

163 */

164 public abstract Double doEvaluateMaxState(GameState gameState, double alpha, double beta, double depth, double depthLimit);
165

166 Vil

167 * Evaluates given game state associated with the minimizing player.

168

169 * @param gameState given game state

170 * @param alpha lower bound on game value known for given game state

171 * @param beta upper bound on game value known for given game state

172 * @param depth current depth

173 * @param depthLimit depth limit

174 * @return calculated game value (or null if time limit is reached)

175 */

176 public abstract Double doEvaluateMinState(GameState gameState, double alpha, double beta, double depth, double depthLimit);
177

178 Vil

179 * Resets this algorithm. I.e. resets initial state (cuts off its children, if they exist), clears moves scores,
180 * clears transposition table. Refutation table remains not cleared due to its purpose - the progressive search.
181 =/

182 @SuppressWarnings ("unchecked")

183 protected void reset() {

184 stopForced = false;

185

186 // identifiers

187 Identifier.setType(this.configurator.getIdentifierType()); // in case, it changed since last
188 // execute() call
189 // root of the tree resetting

190 if (initial != null) {
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initial.refresh();
initial.setParent (null);
initial.setMoveName("");
initial.setDepth(0.0);
initial.getChildren().clear(Q);
recalculateHIfLarge(initial);

// clearing moves scores
movesScores.clear();

// transpostion table
try {
Constructor<TranspositionTable> constructor = (Constructor<TranspositionTable>) Class.forName(configurator.
getTranspositionTableClassName ())
.getConstructor();
transpositionTable = (TranspositionTable) constructor.newInstance();
} catch (Exception e) {
transpositionTable = new TranspositionTableAsHashMap();
e.printStackTrace();

// refutation table
if (refutationTable == null) {
try {
Constructor<RefutationTable> constructor = (Constructor<RefutationTable>) Class.forName(configurator.
getRefutationTableClassName ())
.getConstructor (Double.TYPE);
refutationTable = (RefutationTable) constructor.newInstance(configurator.getRefutationTableDepthLimit());
} catch (Exception e) {
refutationTable = new RefutationTableAsHashMap();
e.printStackTrace();
}
} else
refutationTable.reset();

closedCount = 0;
depthReached = 0.0;

Vi

“ Returns the map with scores of moves.

* @return map with scores of moves

*/
public Map<String, Double> getMovesScores() {
return movesScores;

* Returns the best move, taking into account the player to move first (maximizing or minimizing) at initial state.
If more than one best move (with equal value) is available returns the first one that occured in the scores map.
It is possible that this method returns a null if time limit has been reached and no move score has been

“ evaluated so far.

@return best move
*/
public final String getFirstBestMove() {
double factor = ((initial !'= null) && (initial.isMaximizingTurnNow())) ? 1 : -1;
String bestMove = null;
double bestMoveValue = Double.NEGATIVE_INFINITY * factor;

for (String move : movesScores.keySet()) {
double value = movesScores.get(move);
if (value * factor > bestMoveValue * factor) {
bestMove = move;

bestMoveValue = value;

if ((bestMove == null) && (!movesScores.isEmpty())) // all moves are plus or minus
// infinities, taking the first
bestMove = movesScores.keySet().iterator().next();
return bestMove;
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* Returns list of all best moves (with equal highest score). It is possible that this method returns an empty list

“ if time limit has been reached and no move score has been evaluated so far.

* @return list of all best moves (with equal highest score)

*/

public final List<String> getBestMoves() {

double factor = ((initial != null) && (initial.isMaximizingTurnNow())) ? 1 : -1;
double bestMoveValue = Double.NEGATIVE_INFINITY * factor;

for (String move : movesScores.keySet()) {
double value = movesScores.get(move);
if (value * factor >= bestMoveValue *
bestMoveValue = value;

factor)

List<String> bestMoves = new ArraylList<String>();
for (String move : movesScores.keySet()) {
double value = movesScores.get(move);
if (value * factor == bestMoveValue *
bestMoves.add(move);

factor)

return bestMoves;

* Returns reference to initial game state.
* @return reference to initial game state
1Y
public final GameState getInitial() {
return initial;

* Sets reference to initial game state.

5/
public final void setInitial (GameState initial) {
this.initial = initial;

@param initial reference to initial game state

* Returns reference to currently examined state.

* @return reference to currently examined state
1Y
public GameState getCurrent() {
return current;

JEE

* Returns reference to transposition table.
* @return reference to transposition table

)
public final TranspositionTable getTranspositionTable() {
return transpositionTable;

Returns reference to refutation table.

“ @return reference to refutation table
/
public final RefutationTable getRefutationTable() {
return refutationTable;
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337 /EE

338 * Gets reference to configurator object.

339 *

340 * @return reference to configurator object

341 =/

342 public final GameSearchConfigurator getConfigurator() {

343 return configurator;

344 }

345

346 /EE

347 * Sets reference to configurator object.

348 *

349 * @param configurator reference to configurator object

350 */

351 public final void setConfigurator (GameSearchConfigurator configurator) {

352 this.configurator = configurator;

353 }

354

355 @Override

356 public final int getClosedStatesCount() {

357 return closedCount;

358 }

359

360

361 * Returns the maximum depth that was reached in the search (owing to quiescence) since last reset().
362 d

363 * @return maximum depth that was reached in the search

364 /

365 public final double getDepthReached() {

366 return depthReached;

367 }

368

369 /EE

370 * Calls parent.generateChildren() method and increments depths of children by 0.5 with respect to their parent.
371 *

372 * @param parent reference to game state object for which children should be generated
373 =/

374 protected final List<GameState> generateChildrenWrapper (GameState parent) {
375 List<GameState> children = parent.generateChildren();

376 for (GameState child : children) {

377 child.setParent (parent);

378 child.setDepth(parent.getDepth() + 0.5);

379 if (configurator.isParentsMemorizingChildren())

380 parent.getChildren().add(child);

381 recalculateHIflLarge(child);

382 }

383 return children;

384 }

385

386 *

387 * Recalculates heuristic value for given state if its absolute value is greater than H_SMALLEST_INFINITY constant. The
388 * recalculation is done according to the formula: h = Math.signum(h) * H_SMALLEST_INFINITY * (1.0 + 1.0 /
389 * state.getDepth()).

390 *

391 * @param state reference to game state for which the recalculation is executed
392 */

393 protected final static void recalculateHIfLarge(GameState state) {

394 double h = state.getH(Q);

395 if (Math.abs(h) > GameState.H_SMALLEST_INFINITY) {

396 h = Math.signum(h) * GameState.H_SMALLEST_INFINITY * (1.0 + 1.0 / state.getDepth());
397 state.setH(h);

398 }

399 }

400

401 VAl

402 * Returns a boolean flag showing if given state is a terminal (leaf).

403 *

404 * @param gameState reference to game state

405 * @param depth current depth

406 * @param depthLimit depth limit

407 * @return boolean flag showing if given state is a terminal (leaf)

408 */

409 public final boolean isGameStateTerminal (GameState gameState, double depth, double depthLimit) {
410 depthReached = Math.max(depthReached, depth);
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if ((gameState.isWinTerminal()) || (gameState.isNonWinTerminal()))
return true;
if (depth >= depthLimit)
return (configurator.isQuiescenceOn()) ? gameState.isQuiet() : true;
return false;

Returns a boolean flag stating if given value of a child is an exact game value for given alpha-beta window.

* @aram childValue value
* @param alpha alpha value
* @param beta beta value

@return boolean flag stating if given value of a child is an exact game value for given alpha-beta window

/
public final static boolean isExactGameValue(double childValue, double alpha, double beta) {
return ((alpha < childValue) && (childValue < beta)) || ((childValue == Double.NEGATIVE_INFINITY) && (alpha == Double.
NEGATIVE_INFINITY))
|| ((childValue == Double.POSITIVE_INFINITY) && (beta == Double.POSITIVE_INFINITY));

Updates list of moves along principal variation for given parent and child (that led to an improvement). Resulting
* list of moves along principal variation consists of: parent move name (if not empty) and list of moves along
“ principal variation for child.

“ @param parent reference to parent

* @aram child reference to child

*/

public final static void updateMovesAlongPrincipalVariation(GameState parent, GameState child) {

List<String> movesAlongPrincipalVariation = parent.getMovesAlongPrincipalVariation();
movesAlongPrincipalVariation.clear();

movesAlongPrincipalVariation.add(child.getMoveName());

movesAlongPrincipalVariation.addAll (child.getMovesAlongPrincipalVariation());

Forces current execute() recursion to stop.
)

public final void forceStop() {

stopForced = true;

6.5 MST implementation using Kruskal’s algorithm for the TSP solver

package sac.examples.tsp;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.SortedSet;
import java.util.TreeSet;

Minimum Spanning Tree solver via Kruskal’s algorithm, used in TSP as heuristics.

*/

public class MinimumSpanningTree {

of connections.

List<Connection> connections;

of the minimum spanning tree.

private double cost;
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Vazd
* Creates a new instance of minimum spanning tree as a copy.
*

* @param toCopy minimum spanning tree to be copied

/

public MinimumSpanningTree (MinimumSpanningTree toCopy) {

connections = new ArraylList<Connection>();
connections.addAll (toCopy.connections);
cost = toCopy.cost;

* Creates a minimum spanning tree from a collection of places.
constructor.

* @param places collection of places (as a SortedSet).
*/
public MinimumSpanningTree(SortedSet<Place> places) {
connections = new ArrayList<Connection>();
cost = 0.0;

The Kruskal’s algorithm is performed inside this

SortedSet<Connection> orderedConnections = new TreeSet<Connection>(new ConnectionCostComparator());

// building sorted set of all valid connections
for (Place place places) {
for (Connection connection place.getConnections()) {
if (!places.contains(connection.getPlacel()))
continue;
if (!places.contains(connection.getPlace2()))
continue;
orderedConnections.add(connection);

SortedSet<Place> placesInsideMSP = new TreeSet<Place>();

if (orderedConnections.isEmpty())
return;

// adding first connection

Connection firstConnection = orderedConnections.first();
connections.add(firstConnection);

cost += firstConnection.getCost();
placesInsideMSP.add(firstConnection.getPlacel());
placesInsideMSP.add(firstConnection.getPlace2());
orderedConnections.remove(firstConnection);

while (placesInsideMSP.size() < places.size()) {

Iterator<Connection> iterator = orderedConnections.iterator();

while (iterator.hasNext()) {
Connection connection = iterator.next();

boolean placelInsideMSP = placesInsideMSP.contains(connection.getPlacel());
boolean place2InsideMSP = placesInsideMSP.contains(connection.getPlace2());
if (((placelInsideMSP) && (!place2InsideMSP)) || ((!placelInsideMSP) && (place2InsideMSP))) {

connections.add(connection);
cost += connection.getCost();
placesInsideMSP.add(connection.getPlacel());
placesInsideMSP.add(connection.getPlace2());
iterator.remove();
break;

}

if ((placelInsideMSP) && (place2InsideMSP))
iterator.remove();

* Returns the connections.

“ @return connections
*/

public List<Connection> getConnections() {
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return connections;

Vi

* @return cost of this minimum spanning tree
*/
public double getCost() {

return cost;

* Explicitly sets the cost of this minimum spanning tree.
modifications from outside (e.g. removal of some connection) are made on this tree,

* recalculated in a control manner.
*
/

public void setCost(double cost) {

this.cost = cost;

@param cost new cost to be set

Returns the cost of this minimum spanning tree.

* Checks if a given place is associated with only one connection in this minimum spanning tree.
* connection is returned, otherwise a null is returned.

* @param place reference to given place

)

* @return single connection or null if more than one connection exists

public Connection isPlaceWithSingleConnection(Place place) {

int occurrences = 0;
Connection singleConnection = null;
for (Connection connection : connections) {
if (connection.getPlacel().equals(place)
occurrences++;
singleConnection = connection;
if (occurrences > 1)
return null;

}

return singleConnection;

|| connection.getPlace2().equals(place)) {

If so

This method may be useful in case some simple
and its cost is the

the
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