Faculty of Computer Science and Information Technology West Pomeranian University of Technology, Szczecin

Natural Language processing

PhD. Eng. Joanna Kolodziejczyk jkolodziejczyk@zut.edu.pl

October 13, 2021

What is Natural Language Processing?

Authors

Dan Jurafsky and James H. Martin

Title

Speech and Language Processing 3rd Edition

Web sources

Newest Version: https: //web.stanford.edu/~jurafsky/slp3/ed3book_sep212021.pdf

Examples Translator, speech recognition, understanding

•••	📝 Text	Documents	Upgra	de Login 🗸
Translate from Polish (detected) $$	4	Into English (US) 🗸		Glossary
prowadzący	×	operator		
4		¢]∂	Insert to	🗇 Сору
Dictionary entries for "prowadzący"				^
prowadzący adjective do				
leading adj atja				
prowadzący noun, masculine (je				
leader n 🕼				
operator n 👘				
less common:				
tutor n 🕼 🕔 instructor n 🅼				
Version 2.7.95892 is now available.			Restart	Later
Restart the app to update now.				

Watson https:

//www.ibm.com/cloud/watson-natural-language-understanding
https://www.youtube.com/watch?v=lI-M70_bRNg

- Machine Translation
- Information Retrieval
- Question Answering
- Dialogue Systems
- Information Extraction
- Summarization
- Sentiment Analysis

Part-of-speech (POS) tagging							
ADJ	ADJ	NOUN	VERB	ADV			
Colorless	green	ideas	sleep	furiously.			

Named entity recognition (NER)PERSONORGLOCEinstein met with UN officials in Princeton

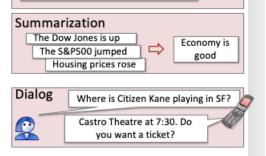
Question answering (QA)

Q. How effective is ibuprofen in reducing fever in patients with acute febrile illness?

Paraphrase

XYZ acquired ABC yesterday

ABC has been taken over by XYZ



- Language modelling
- Part-of-speech tagging
- Syntactic parsing
- Named-entity recognition
- Coreference resolution
- Word sense disambiguation
- Semantic Role Labelling

This is a simple sentence words

This is a simple sentence words be MORPHOLOGY 3sg present

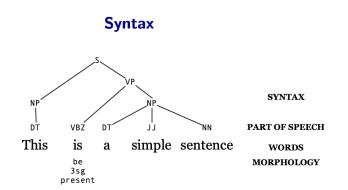
Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlaty. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	"	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren	$],), \}, >$
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.1?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Figure 8.1 Penn Treebank part-of-speech tags (including punctuation).

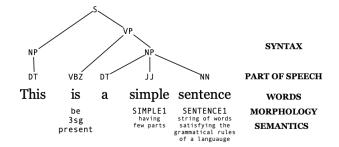
DT VBZ DT JJ NN PART OF SPEECH This is a simple sentence words be 3sg present be

$$\begin{split} & S \longrightarrow NP \quad VP \\ & NP \longrightarrow (\text{Det}) N_1 \\ & N_1 \longrightarrow (AP) \quad N_1 \quad (PP) \end{split}$$

- 1. The first rule reads: A S (sentence) consists of a NP (noun phrase) followed by a VP (verb phrase).
- 2. The second rule reads: A noun phrase consists of an optional Det (determiner) followed by a N (noun).
- The third rule means that a N (noun) can be preceded by an optional AP (adjective phrase) and followed by an optional PP (prepositional phrase). The round brackets indicate optional constituents.r

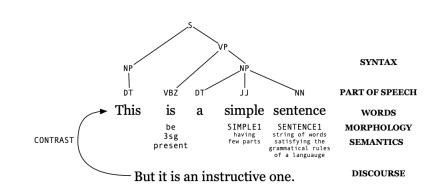


14



15

 $\exists y (this_dem(x) \land be(e, x, y) \land simple(y) \land sentence(y))$



16

- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Quantifier scope: Every child loves some movie
- Multiple: I saw her duck
- Reference: John dropped the goblet onto the glass table and it broke.

Methods of dealing with ambiguity.

- non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible analyses.
- probabilistic models (HMMs for POS tagging, PCFGs for syntax) and algorithms (Viterbi, probabilistic CKY) return the best possible analysis, i.e., the most probable one according to the model.

This "best" analysis is only good if our model's probabilities are accurate. Where do they come from?

Like most other parts of AI, NLP today is dominated by statistical methods.

- ► Typically more robust than earlier rule-based methods.
- Relevant statistics/probabilities are learned from data.
- ► Normally requires lots of data about any particular phenomenon.

Sparse data due to Zipf's Law Why NLP is hard?

- To illustrate, let's look at the frequencies of different words in a large text corpus.
- Relevant statistics/probabilities are learned from data.
- Assume a "word" is a string of letters separated by spaces (a great oversimplification, we'll return to this issue...)

Most frequent words (word types) in the English Europarl corpus (out of 24m word tokens)

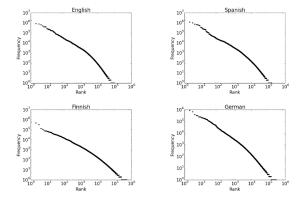
any word			nouns		
Frequency	Туре		Frequency	Туре	
1,698,599	the	-	124,598	European	
849,256	of		104,325	Mr	
793,731	to	-	92,195	Commission	
640,257	and		66,781	President	
508,560	in		62,867	Parliament	
407,638	that	-	57,804	Union	
400,467	is		53,683	report	
394,778	a		53,547	Council	
263,040	Ι		45,842	States	

But also, out of 93638 distinct word types, 36231 occur only once. Examples:

- cornflakes, mathematicians, fuzziness, jumbling
- pseudo-rapporteur, lobby-ridden, perfunctorily,
- Lycketoft, UNCITRAL, H-0695
- policyfor, Commissioneris, 145.95, 27a

Order words by frequency. What is the frequency of nth ranked word?

22



Summarizes the behaviour we just saw:

 $f \times r \approx k$

- ► f = frequency of a word
- r = rank of a word (if sorted by frequency)
- k = a constant

Why a line in log-scales? $fr = k \Rightarrow f = \frac{k}{r} \Rightarrow \log f = \log k - \log r$

- Regardless of how large our corpus is, there will be a lot of infrequent (and zero-frequency!) words.
- ► In fact, the same holds for many other levels of linguistic structure
- This means we need to find clever ways to estimate probabilities for things we have rarely or never seen during training.

Not only can one form have different meanings (ambiguity) but the same meaning can be expressed with different forms:

She gave the book to Tom *vs.* She gave Tom the book Some kids popped by *vs.* A few children visited Is that window still open? *vs.* Please close the window

Context dependence and Unknown representation Why NLP is hard?

- Last example also shows that correct interpretation is context-dependent and often requires world knowledge.
- Very difficult to capture, since we don't even know how to represent the knowledge a human has/needs: What is the "meaning" of a word or sentence? How to model context? Other general knowledge?
- In particular, we've made remarkably little progress on the Knowledge Representation problem...

Other Why NLP is hard?

non-standard English

Great job @justinbieber! Were SOO PROUD of what <u>vouve</u> accomplished! U taught us 2 <u>#neversaynever</u> & you yourself should never give up either♥

neologisms

unfriend Retweet bromance

segmentation issues

the New York-New Haven Railroad the New York-New Haven Railroad

world knowledge

Mary and Sue are sisters. Mary and Sue are mothers.

idioms

dark horse get cold feet lose face throw in the towel

tricky entity names

Where is A Bug's Life playing ... Let It <u>Be</u> was recorded a mutation on the for gene ...

WI

Thank you for your attention