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Abstract

The lecture presents a new (according to the author’s knowledge) interpretation of proba-
bility that is devoid a number of weaknesses characterizing the commonly used frequency
interpretation. The lecture explains why the frequency interpretation is not credible in
case of no or small data and mean number of data pieces. The main reason of this phe-
nomenon is the nonlinear character of this interpretation, which causes the pieces of data
of equal significance influence the probability value with non-equal strength. However, the
limited credibility of the frequency interpretation at small number of data pieces does not
mean that the method is generally incorrect, because its credibility increases with number
of data pieces and at sufficiently high number of pieces the results become precise. The
new completeness interpretation delivers credible results both at lack of data, at small, at
mean, and at high number of data pieces. This interpretation is of linear character, in the
sense that data pieces of equal significance influence the hypothesis probability with equal
strength. Therefore its accuracy range is greater than the one of frequency interpretation.
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1 Introduction

Probability theory is the oldest and the most developed method of investigating uncer-
tainty. Later also some other methods have been developed and these include fuzzy
systems (Zadeh [12, 21]), Dempster-Shaffer’s belief theory [19], possibility theory (Dubois
and Prade [4]), info-gap theory (Yakov [20]).

The first interpretation of probability was formulated by Laplace in 1814 [13]. His
interpretation is referred to as the classical one. Since then multiple books and papers
on probability theory have been published. This theory is lectured on thousands of uni-
versities and widely used in practice. Therefore one could think that probability theory
is a strongly based scientific method that rises no doubts. However, it appears that the
truth is quite different. Uncertainty and disagreement among scientists as to the sense of
probability are very large. There is a great number of questions, doubts and paradoxes
concerning understanding probability. Some scientists are even of the opinion that prob-
ability theory is in deep crisis. An example of such opinion is shown in a book with a
very meaningful title “The search for certainty- On the clash of philosophy of probabil-
ity”, [1], written by Professor K. Burdzy from University of Washington and published in
2009. This book has aroused a vivid discussion among scientists, mainly in the Internet
[6, 10]. Some scientists gave whole hearted support to Professor Burdzy’s opinion; other
criticized it, but rather in a moderate way. Supporters of presently popular probability
theory mainly underline the method’s practical usefulness in statistics. Nevertheless, Pro-
fessor Burdzy is not alone in his views. In literature some other, very strong opinions can
also be found: “Probability does not exists” and “No matter how much information you
have there is no scientific method to assign a probability to an event”. These are opinions
of a famous probabilist de Finetti [5]. Because of limited spatial extent of this lecture all
critical remarks cannot be presented here. But an interested reader can easily find them
in the book of Professor Burdzy [1] or on multiple web sites, e.g. [7, 8].

First of all, it is very surprising that although we live in the XXI century we don’t
know what probability really is, as even between specialists there is no agreement as to
the sense of probability. Intuitively, in everyday life, everyone seems to understand prob-
ability. But the more one penetrates questions and problems it addresses, the more and
more one begins to be aware how difficult the matter is. There are many scientific schools
of interpreting (explaining) probability in various ways and usually one probability inter-
pretation tries to improve weak points of other. Below, the main (not all) interpretations
with short comments of Professor’s Burdzy [1] are presented. Probability interpretations
are also discussed e.g. in books of Khrennikov [11] and Rocchi [18], in the Internet [8]
and in scientific encyclopedia [7].

1. The classical probability (Laplace, 1814 [13]),
“which claims that probability is symmetry”.

2. The logical probability (Carnap, 1950 [2]),
“which claims that probability is ‘weak’ implication”.

3. The frequency theory (von Mises, 1957 [15]),
“which claims that probability is long run frequency”.

4. The propensity theory (Popper, 1957, [17]),
“which claims that probability is physical property”.
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5. The subjective theory (de Finetti, 1975, [5]),
“which claims that probability is personal opinion”.

These are not all probability interpretations but only the most known ones. Particular
interpretations reveal large quantitative differences in explanation of probability and have
their extreme advocates. There exists also an interesting opinion of Hajek [7], according to
who each of the above interpretations accentuates one of many faces of probability: each
of them being partially true. In the practice the most applied, and lectured on universities
are the classical and frequency interpretation. Therefore these two interpretations will be
shortly presented and discussed in the next chapter.

2 The classical and frequency interpretation of prob-

ability

The classical interpretation with its main representative Laplace [10], (1814) “assigns
probabilities in the absence of any evidence or in the presence of symmetrically balanced
evidence. The guiding idea is that in such circumstances probability is shared equally
among all the possible outcomes, so that the classical probability of an event is simply the
fraction of the total number of possibilities in which the event occurs”, [7]. Mathematically
this can be represented as follows: If a random experiment can result in N mutually
exclusive and equally likely outcomes and if NA of these outcomes result in the occurrence
of the event A, the probability of A is defined by:

P (A) =
NA

N
. (1)

There are two clear limitations of the classical definition. Firstly, it is applicable only
in situations in which there is only a ‘finite’ number of possible outcomes. But some
important random experiments, such as tossing a coin until it rises heads, give rise to
an infinite set of outcomes. And secondly, you need to determine in advance that all
the possible outcomes are likely without relying on the notion of probability to avoid
circularity – for instance by symmetry considerations, [7]. On the ground of classical
interpretation many problems could not be explained. A trial of improvement of the
classical interpretation and of removal of at least some weaknesses has been undertaken
by ‘frequentists with the main representative von Mises [15]. “Frequentists posit that the
probability of an event is its relative frequency over time, i.e. its relative frequency of
occurrence after repeating a process a large number of times under similar conditions . . . .
If we denote by nA the number of occurrences of an event A in n trials, then if:

lim
n→∞

nA

n
= p , (2)

we say that P (A) = p”, [7].
This interpretation is also called the long-run frequency interpretation. Because in

practice a very large (infinite) number of experiments cannot be realized or the number
of pieces of data (e.g. of statistical data) is limited we have to use the finite-frequency
interpretation according to which the probability is calculated on the basis of data we have
at disposal. The definition of probability according to finite-frequency interpretation is
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as follows: “the probability of an attribute A in a finite reference class B is the relative
frequency of actual occurrence of A within B”, Hajek in [7]. Thus:

p(A) =
nA

n
, (3)

where: n – a finite number.

3 Main objections to classical and frequency inter-

pretations of probability

As mentioned in section 1 there exist more than 5 main interpretations of probability and
there are also serious objections to each of them. Because of the volume limitation of
this lecture only some of the objections to the classical and frequency interpretation are
presented below.

1.
“Since the (classical) definition applies only to those situations in which all outcomes are
equally ‘possible’ it does not apply to a single toss of a deformed coin”, [1].

2.
The classical definition seems to be circular because it refers to “equally possible cases –
and so probability is defined using the notion of probability”, [1].

3.
“According to the finite frequentist, a coin that is never tossed and thus yields no actual
outcomes whatever, lacks a probability for heads altogether; yet a coin that is never
measured does not thereby lack a diameter”, [1]. This problem can be called ‘the zero-
evidence case’.

4.
“According to the frequency theory one cannot apply the concept of probability to indi-
vidual events”, [1], such as a single coin tossing. “. . . a coin that is tossed exactly once
yields a relative frequency of heads of either 0 or 1, whatever its bias. . . . this is so called
‘problem of the single case’ ”, [7]. From the fact that one coin toss yielded head should
we conclude that the head probability equals 1? Such conclusion is suggested by the
frequency theory. Such conclusion would be hasty and precipitate. Let us consider a sec-
ond example, of a physician, who wants to determine the probability of cancer as result
of smoking. This physician begins to collect data about patients. Let us assume that
at the beginning his data basis consist of only one patient who has smoked cigars since
many years but has no cancer. Direct conclusion suggested by frequency interpretation
here is “probability of cancer at smoker is zero”. Such conclusion would of course be
nonsense. The above examples shown that the frequency theory cannot be applied to a
single case. But what, when number of cases is higher, e.g. 2, 3, . . . , 10? It appears
that also for higher number of cases the frequency interpretation gives questionable or
non-credible results. Let us assume that in 5 coin tosses the head was up. The frequency
theory suggests in this case the head probability equal to 1 and the tail probability equal
to zero. Let us assume that the physician from the previous example has 10 patients in
his data basis who are smokers and have no cancer. The frequency interpretation also in
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this case suggests directly probability 1 for hypothesis “Smoking does not cause cancer”.
Of course, no one of us would accept such scientific result.Thus, it is clear that in the case
of small number of evidence pieces or when all evidence pieces support only one hypothe-
ses and remaining hypotheses have no support (unilateral-evidence case), the frequency
interpretation delivers doubtful or non-credible results. Therefore many scientists are of
the opinion that “probability of single cases are nonsense”, Hajek in [7]. However, it is
not true. As the new probability interpretation presented in this lecture will show, also
the single-case problem and the unilateral-evidence problem can credibly be solved.

5. Peculiarities of the frequency interpretation at unilateral evidence.
Let us reconsider the physician who wants to determine probability of the hypothesis
h “smoking increase the risk of cancer”. Anti-hypothesis NOT h = h is in this case
“smoking does not increase the risk of cancer”. After certain time the physician has in his
database a number of n = 50 patients who are smokers but nobody of them has cancer.
All these patients supports the anti-hypothesis h and no patient support the hypothesis
h. Thus we have nh = 0 and n

h
= 50. The frequency theory gives probability values as

below.

ph = nh/n = 0/50 = 0 p
h
= n

h
/n = 50/50 = 1 .

The above results suggest conclusion which is difficult to accept: “smoking does not
increase the risk of cancer”. A similar situation can be observed at tossing a usual coin.
Let us assume, that in all n = 10 tosses the head was up. The direct conclusion suggested
by the frequency theory concerning the head probability ph is:

ph = nh/n = 10/10 = 1 .

This probability value would mean the total domination of head in the coin which
is non-credible. What is the reason of such incorrect results delivered by the frequency
interpretation? The reason is the incorrect formula ph = nh/n used in this interpretation
for probability calculation. Illogicality of this formula is illustrated in Fig. 1.

The formula ph = nh/n seemingly seems linear in relation to the nh – number, because
this number is in the nominator of the formula. Thus one could think that each piece of
evidence supporting this hypotheses increases its probability at one and the same value
1/n.

But it is not true, because the number nh supporting the hypothesis h is also in the
formula denominator n = nh + n

h
and thus we have ph = nh/(nh + n

h
). This formula

is nonlinear. The nonlinearity of the formula suggested by frequency theory is just the
reason of observed illogicalities of this theory. Let us for example analyze a special, border
situation when there is an evidential support of the hypothesis h (nh > 0) but there does
not exist any support of the anti-hypothesis h (n

h
= 0). This situation is modeled by the

vertical, back face in Fig. 1. If we have no support both for the hypothesis h (nh = 0)
and no support for the anti-hypothesis h (n

h
= 0) then according to the frequency theory

the probability ph (and simultaneously p
h
) is undetermined (the zero-evidence case). If

however even one single evidence piece supporting the hypothesis h would be achieved
then the probability value ph becomes at once known and has the highest possible value
ph = 1, what means certainty. If 10 evidence pieces for support of the hypothesis h
have been obtained (and no support of the anti-hypothesis h) then its probability does
not change and still equals 1. Also if 100 pieces (nh = 100 at n

h
= 0) or more would

support the hypothesis, its probability does not change and keeps the same value(ph = 1,

6



ph

n = nh + nh = nSEC

nh

0

nh

nSEC

nSEC

3/4 nSEC

1/8 nSEC

1/4 nSEC

2/4 nSEC

1/16 nSEC

1

1

ph =
nh

n
=

nh

nh + n
h

Figure 1: Functional surface of probability of the hypothesis h calculated with formula
ph = nh/n = nh/(nh + n

h
) suggested by the frequency interpretation. Denotation: n –

total number of evidence pieces being at disposal, nh – number of pieces supporting the
hypothesis h, n

h
– number of pieces supporting the anti-hypotheses h, nSEC – a certain

constant number of pieces (nSEC = const).

p
h
= 0). It makes no difference, whether we have 1 or 100 or 1000000 evidence pieces

supporting the hypothesis h (at no support of the anti-hypothesis h). Its probability does
not change. Let us consider yourselves, whether the number of evidence pieces supporting
the hypothesis should or shouldnt influence the hypothesis probability or not?

According to the frequency theory, in certain situations, the number of evi-
dence pieces has no meaning, in other situations it has meaning on probability
value (when both nh > 0 and n

h
> 0)! It is logical? Certainly not. It is illogical and,

as it will be shown, the new, completeness interpretation proves in logical and convincing
way that also in the extreme, special situations (nh = 0 and n

h
> 0) or (nh > 0 and

n
h
= 0) the number of evidence pieces has an impact on probability value. It always

has an impact! And let us consider another one question: If the frequency theory gives
non-credible probability values in strictly extreme situations (nh = 0, n

h
> 0 and nh > 0,

n
h
= 0) then will it give credible results in situations very close and similar to the ex-
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treme ones as e.g. when nh is very small and n
h
is not very small (for example nh = 1

and n
h
= 5) and similar ones?

6. Fluctuations of the frequency probability at small number of evidence pieces.
The author had made an experiment of coin tossing and achieved the following result
{T,H,T,T,T,H,T,H,H,T}, where H means head and T means tail. Table 1 shows values
of the frequency probability ph = nh/n.

Toss result nh n ph = nh/n

T 0 1 0

H 1 2 1/2 = 0.500

T 1 3 1/3 = 0.333

T 1 4 1/4 = 0.250

T 1 5 1/5 = 0.200

H 2 6 2/6 = 0.333

T 2 7 2/7 = 0.286

H 3 8 3/8 = 0.375

H 4 9 4/9 = 0.444

T 4 10 4/10 = 0.400

Table 1: Values of the frequency probability ph = nh/n calculated according to the
frequency interpretation after each of succeeding coin tosses from the series of 10 tosses
{T,H,T,T,T,H,T,H,H,T}, where: nh – head number, n – number of tosses, H – head, T –
tail.

Fig. 2 shows graph of probability estimates nh/n of the hypothesis h (head domination)
that are given in Table 1. Result of a single toss can be called confirmation of one of both
possible hypotheses (“head domination” as hypothesis h or “tail domination” as anti-
hypothesis h).

As it can be seen on Fig. 2 the probability estimates considerably vary after each
toss. Thus the estimate delivered by the frequency interpretation resembles a hesitant,
undecided person, who too quickly and too hasty draws conclusions after achieving each
single piece of information. Then, when new information pieces come she/he has to
considerably correct her/his previous conclusions.

7. Fluctuations of frequency probability at high number of evidence pieces.
According to the frequency interpretation of probability based on a great number of
evidence pieces (experiment results, samples) the true, exact value of probability can only
be known after realizing an infinitely large number of experiments. Alas, experiments
made by scientists have shown that even after a very large number of experiments the
probability not always stabilizes and incessant fluctuations of probability are observed,
Larose [14]. This phenomenon is illustrated by Fig. 3.

As analyses made by the author shown the main reason for the considerable fluctu-
ations of probability defined as the relative frequency is the non-linear character of the
formula (ph = nh/n) itself used by the frequency theory for probability calculation and
not some objective reasons. It refers both to cases of a small and a large number of
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Figure 2: Graph of probability estimates ph = nh/n of the hypothesis h (head domination)
calculated after each succeeding toss of the series {T,H,T,T,T,H,T,H,H,T} as example of
considerable fluctuations if probability calculated on the basis of the frequency theory,
where: nh – number of heads after n tosses.

p

n

Figure 3: Phenomenon of fluctuations of frequency probability calculated according to
frequency theory (ph = nh/n)observed after a great number of experiments.

experiments. In case of the new, completeness interpretation of probability fluctuations
both at small and large number of experiments don’t occur in practice and are consider-
ably smaller than in case of the frequency interpretation. This confirms stabilization of
probability at large number of evidence pieces.

8. “Injustice” and illogicality of the frequency interpretation of probability.
Let us assume, like previously in paragraph 6, that we have some results of coin tossing
in the form of a sequence {T,H,T,T,T,H,T,H,H,T}. Table 2 presents values of probability
estimates ph (head domination) after each succeeding toss, after succeeding confirmations
or negations of the hypothesis h.

As it can be seen in Table 2 the second toss gave head causing probability change
∆ph = 0.5. This head will be denoted as H2. The succeeding head was risen in the toss 6
(H6) and changed the head probability by ∆ph == 0.133, which is considerably smaller
than the value 0.5 caused by H2. The third head H8 changed the head probability
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Toss result nh n ph = nh/n Change ∆ph

T 0 1 0 —

H 1 2 1/2 = 0.500 +0.500

T 1 3 1/3 = 0.333 −0.167

T 1 4 1/4 = 0.250 −0.083

T 1 5 1/5 = 0.200 −0.050

H 2 6 2/6 = 0.333 +0.133

T 2 7 2/7 = 0.286 −0.047

H 3 8 3/8 = 0.375 +0.089

H 4 9 4/9 = 0.444 +0.069

T 4 10 4/10 = 0.400 −0.044

Table 2: Values of probability ph = nh/n of the hypothesis h about head domination
and values of the probability changes ∆ph after each succeeding toss (in relation to the
previous toss) in the sequence of 10 tosses {T,H,T,T,T,H,T,H,H,T} calculated on the
basis of the frequency interpretation of probability, where nh means the head number
after n tosses, H means head and T means tail.

at a yet smaller value of ∆ph = 0.089 and the last head H9 at lowest value ∆ph =
0.040. Because each of the succeeding heads caused different changes of the probability
it means that each of the heads had different evidential meaning for the probability
evaluation. Is it logical and justified? Why result of one coin toss should be
more important for probability than result of another toss? This phenomenon
seems illogical and difficult to explain or justify. The phenomenon of different weight
(significance) of particular evidence pieces is known in the literature as “sequence ordering
problem” and has been remarked by many scientist, e. g [1, 7]. As it will be shown in next
chapters, this phenomenon does not occur in case of the new completeness interpretation
of probability, where each succeeding evidence piece change probability at the same value.

4 The new, completeness interpretation of probabil-

ity

The completeness interpretation of probability [16] is according to the author’s knowledge
new and devoid of a series of weaknesses of the frequency interpretation. First of all, the
formula ph = nh/n proposed by the frequency theory is partly incorrect (though not fully
incorrect). It allows for calculation of credible probability values only for large and very
large number of samples. This fact explains its practical usefulness in statistics, where
frequently a greater evidence sample is at disposal. On the other hand, at small number
of evidence pieces, in case of unilateral evidence and at no evidence this formula can-
not be used for probability estimation, thus it cannot model a certain class of problems.
It also means that the formula ph = nh/n is qualitatively incorrect. It seems that the
reason for this qualitative incorrectness is a lack of an important element in the whole
concept of the frequency interpretation. According to the author, the lacking element
is ‘evidential completeness’. Its meaning will be explained below. In Polish probabili-
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tyis called ‘prawdopodobieństwo’, which means ‘similarity to the truth’. In Latin also:
‘versimilitudo or probabilitas’ (veritas means the truth and probabilis means credible or
probable). Perhaps probability has similar meaning in other languages too. Thus, if we
want to determine probability of a given hypothesis h concerning an event on the basis of
evidence pieces ehi, i = 1, . . . , l, that confirm the truth of h we should have an image of
what would the complete set EC = {eh1, . . . , ehl} of such evidence pieces be, which would
fully prove the truth (with certainty 1) of this hypothesis. Such evidential set is proposed
to be called ‘evidential completeness’ (EC) or ‘evidence complete-set’ (ECS). Further into
this chapter the case of a discrete random variable X will be discussed. Let us assume
that the variable can take k possible values in a future event. Then we can formulate a
hypothesis set H for this variable as below.

H = {h∗

1, h
∗

2, . . . , h
∗

k}

It can easily be shown that each finite set of k hypotheses can be transformed in k
binomial sets of the form:

H = {h,NOT h} = {h, h}

where: h = h∗

i
, i = 1, . . . , k and h = H − h∗

i
. E.g. in the case of a dice h∗

i
= h can mean

‘1’ and h – ‘NOT 1’. Thus, for each discrete variable we can apply the basic, binomial
pattern: ‘hypothesis’, ‘anti-hypothesis’, that is well represented by coin tossing: h =
head domination, h = NOT h = NOT head domination (tail domination). Then, we can
successively investigate probability of the hypothesis h∗

2 = ‘2’ and of the anti-hypothesis
NOT h∗

2 (NOT 2), etc. A problem with k hypotheses can be transformed in a problem
with k1 binomial sub-problems of the type of coin tossing. A continuous random variable
X can be discretized in k sub-intervals. This way we can also transform the task of
identification of its probability density function while performing a task with a discrete
variable for which k1 probabilities of sub-intervals have to be determined, Fig. 4.

Hypothesis h: x ∈ [xi, xi+1]

gp

xx

gp

xi

identified distribution

h

h h

h

h

xi xi+1

Figure 4: Transformation of the task of determining probability density function of a
continuous random variableX in k1 tasks with the binary hypotheses setH = {h,NOT h}
of the type of coin tossing. Denotation: pd – probability density, h – NOT h.

Decreasing the granulation of subintervals allows for increasing the accuracy of ap-
proximation of the continuous variable by the discrete variable. The above shows that
the binomial problem with 2 possible outcomes of the type of coin tossing is the basic
probabilistic problem and its solution is a key to solving other more complicated problems
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with number of hypotheses larger than 2. Therefore the new probability interpretation
will be explained on the example of the binomial problem. In the lecture it will be ex-
plained on an example of coin tossing to ensure the ease of understanding. However, one
should not draw a conclusion that an investigation of coin-tossing problem is
this lecture’s task. In here general problem with 2 hypotheses is analyzed.
The example of coin tossing is only one of easiest possible illustrations of this
general two-hypotheses problem.

Below, there are given 3 examples of binomial problems.

• Hypothesis: the rate of people with diabetes among obese ones exceeds 25%.
Anti-hypothesis: the rate of people with diabetes among obese ones does not exceed
25%.

• Hypothesis: the time of my today travel with a car from Szczecin to Berlin will
exceed 2 hours.
Anti-hypothesis: the time of my travel will not exceed 2 hours.

• Hypothesis: the average zloty/dollar-exchange rate in 2011 will drop below 2.5
zloty/dollar.
Anti-hypothesis: the average zloty/dollar-exchange rate will not drop below 2.5
zloty/dollar.

According to the author, probability should rather not be assigned to events or
states but to hypotheses concerning possible outcomes of the events or forms
of states. For example, before coin tossing we can formulate 2 hypotheses concerning the
outcome of this experiment: the hypothesis h (head domination) and the anti-hypothesis
NOT h = h (tail domination) and assign their probabilities. After the coin tossing,
we have to deal with its realization r = head or r = tail. However, their probabilities
were assigned not by us but by the experiment. Probabilities of realizations can only
have values 1 or 0. Fractional values are not possible. One coin tossing delivers only one
confirmation: either it confirms the hypothesis h (head domination) or the anti-hypothesis
h (NOT head domination). One coin tossing delivers only one piece of evidence. If n
tosses were realized that ended with k heads and n−k tails, then we have k confirmations
of the hypothesis h and n − k confirmations of the anti-hypothesis h at disposal. The
number n of all confirmations can be different, e.g. 1 or 5 or 21 or 1000, etc. An important
question arises: can we infer and assign probabilities to hypothesis on the basis on any
number n of evidence pieces? If yes, then how accurate these probabilities will be? Does
accuracy depend on the number n of evidence pieces or not? Are probabilities of one
hypothesis determined on the basis of different numbers of confirmations equally credible?
Thus, answering the question concerning the necessary cardinality n of the evidence set
is essential. As proposed, the set of evidence pieces that fully proves the hypothesis h,
makes it certain and excludes even minimal probability of the anti-hypothesis NOT h
(ph = 1, pNOT h = 0) will be called a complete evidential set (CES) or shortly evidential
completeness (EC). In certain problems this set can have an ideal form, in other problems
it will be impossible. As an example we can consider a crime, e.g. a murder. Let person A
be suspect of murder (SP – suspected person). The person is not the only person suspected
by police. The binomial set of hypotheses has in this case the form H = {hA,NOT hA},
where h means the hypothesis ‘person A committed the murder’ and the anti-hypothesis
NOT hA means ‘a person or persons other than A committed the murder’. The evidential
completeness EC can be seen as below.
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EC = { SP has no alibi for the murder time, SP had strong motives for the murder
commission (e.g. large inheritance), SP was seen by few witnesses in time and
on place of the murder in the course of the murder commission, on the murder
place there was found genetic matter of A, on the knife which was the murder
tool experts found some genetic matter of SP } = {eCE1, . . . , eCE5}

If we have such evidence against the person A as in the set EC we can be sure of
the hypothesis hA (A is the murderer) and probability of this hypothesis is equal to 1.
However, if against A we only have an evidential set as below:

EA = { A has no alibi for the murder time, A had strong motives for the murder com-
mission }

then we cannot be sure of the hypothesis and its probability is fractional. It should be
noted that particular evidence pieces in the evidential set EA are objective and confirmed
facts determined by the police. Therefore their probabilities equals 1 and they don’t have
to be evaluated. Evaluation concerns only the probability degree of the hypothesis hA.
The probability degree of this hypothesis can approximately be evaluated by criminal
experts. Similarly, the weight of particular evidence pieces also has to be evaluated by
experts. In some cases, the weights (significance degrees) of particular evidence
pieces can be different. Sometimes, as in the case of coin tossing weight of each single
toss (of its result) is acknowledged to be equal.

In the murder problem the evidential completeness consisted of a finite number of
pieces. Below a second example is shown, where the evidential completeness if finite. It
is a binomial problem with following hypothesis:

The hypothesis: the first person I will meet today in my faculty will be a woman.

The anti-hypothesis: the first person I will meet today in my faculty will be a man.

In this problem the evidence completeness necessary for determining probability of
the hypothesis is finite because it consists of all students studying in the faculty and of
all workers of the faculty and this number is limited.

Let us go back now to the binomial hypothesis pattern H = {h,NOT h}. What
will the evidential completeness EC in case of this pattern represented by coin tossing
be? The ideal EC would consist in this case of an infinitely large number n of tossing
results. But it is impossible to realize such number of trials. With similar situations
we can also have to do in other cases. Therefore in many practical problems we will
have to use not an ideal but an approximate evidence completeness which will be called
satisfactory evidential completeness, in short SEC. It is such set evidence pieces,
which as a matter of fact does not ensure the full truth of a given hypothesis, however, it
insures this truth to a satisfactory degree, e.g. to 0.99 or 0.95, etc., in the scale [0,1].This
degree should be determined by experts. In the case of coin tossing SEC will contain
such number nSEC of trail results that is sufficient for probability determining with a
satisfactory accuracy. The number nSEC can also be understood as a certain model or
representation of the infinity, that is, a number which in the given specific problem
well represents (replaces) the infinity. To find such number we can use the so called
Chernoff bound [3, 9]. However, the problem of possibly precise determining of the nSEC-
number is very important, not easy and requires special and more advanced investigations
for different hypothesis patterns (binomial, trinomial, . . . , polynomial pattern). Some
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possibilities gives here Chernoff bound. Chernoff has derived a formula for the binomial
hypothesis pattern which allows for determining the minimal, satisfactory number of
evidence pieces (in the case of coin tossing the minimal number of tosses). On the basis of
this number the probability of a given hypothesis h can be determined with an assumed,
required credibility. The Chernoff formula (4) can be seen below, with a little changed
denotation.

nSEC ≥ 1

(phc − 0.5)2
ln

1√
ǫ

(4)

Denotation:
ǫ – a certain, assumed, maximal probabilistic uncertainty (error) of the hypothesis proof
(e.g. about head domination) which should not be exceeded. If we assume e.g. ǫ = 0.01
then accuracy of the hypothesis proof based on the number nSEC of evidence pieces will be
equal to at least 1− ǫ = 0.99. In practice, it means that if 100 series of coin tossing would
have been made (in each series nSEC tosses) then in only one of these 100 series (ǫ = 0.01)
its result would not confirm the hypothesis h but the anti-hypothesis NOT h = h. In other
99 series (each consisting of nSEC tosses) the hypothesis h (e.g. about head domination)
would be confirmed.

phc – means an assumed probability of the hypothesis (phc ≥ 0.5), which we want to
check or prove on the basis of nSEC evidence pieces. If in case of a coin we suspect (e.g.
from introductory experiments) that the head domination (the coin asymmetry) is equal
to about 0.55 then we assume phc = 0.55 and calculate the number nSEC of tosses that
is necessary for sufficiently credible prove of the hypothesis about the head domination
(using Chernoff bound (4)). If after a series of nSEC tosses the observed frequency ph of
head was higher than the assumed border phc (e.g. ph = 0.57 at phc = 0.55) then it would
mean that the realized trial number nSEC was higher than necessary. If the observed
frequency ph of the head was lower than phc ( e.g. ph = 0.53 at phc = 0.55) then a new
nSEC value should be calculated for the new value of phc = 0.53. This new value would
be higher than the old one, which would mean that additional trails would have to be
realized. If no additional trials were made, then the new, real accuracy (1 − ǫ) of the
hypothesis should be calculated. If the trials number was too low than required, then the
accuracy would be also lower, not 0.99 but e.g. 0.91. Table 3 gives few examples of the
suspected hypothesis probability phc and the number nSEC of evidence pieces required for
proving with accuracy 0.99.

phc 0.501 0.510 0.520 0.530 0.550 0.600

nSEC 2 302 586 23 026 5 757 2 559 921 231

Table 3: Examples of satisfactory evidence completeness nSEC (required number of evi-
dence pieces) in the binomial problem (e.g. required number of coin tosses) allowing for
hypothesis prove with accuracy (1− ǫ) = 0.99 at maximal error ǫ = 0.01.

As examples in Table 3 show, generally the more symmetrical the coin is (the head
probability approaches 0.5) the more difficult it becomes to prove the hypothesis because a
greater number of tosses nSEC is required. Likewise, the more asymmetrical the binomial
problem is the less evidence pieces nSEC are necessary. In some ways the task resembles
identification of twins. In following paragraphs definitions of probability for the
binomial hypothesis pattern will be presented. These definitions allow for showing,
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that in many cases it will not be possible to precisely determine the probability ph of the
hypothesis. However, as we will see the evidence set Eh we have at disposal, depending
on its strength, will allow for more or less approximate determination of probability.

The minimal probability phmin of the hypothesis h concerning a given event or
a state of matter is the degree of conformability (or similarity) of the evidence set Eh

that we have at disposal for confirmation of the hypothesis h with the evidence required
for full confirmation of the hypothesis, which is collected in the set ECh of evidential
completeness of hypothesis h.

The maximal probability phmax of the hypothesis h is equal to one minus the
minimal probability pNOT hmin of the anti-hypothesis NOT h.

phmax = 1− pNOT hmin (5)

The minimal probability pNOT hmin of the anti-hypothesis NOT h is the degree of
conformity (similarity) of the evidence set ENOT h containing evidence pieces confirming
truth of the anti-hypothesis with the complete evidence set ECNOT h required for full
confirmation of the anti-hypothesis truth.

The maximal probability pNOT hmax of the anti-hypothesis NOT h is equal to one
minus the minimal probability phmin of the hypothesis h, formula (6).

pNOT hmax = 1− phmin (6)

The true (exact) probability value ph of the hypothesis h (and also the true
value of the anti-hypothesis probability) can be determined only when the condition
(7) will be satisfied, that is, when the sum of minimal probabilities of the hypothesis and
the anti-hypothesis will be equal to one (7).

IF (phmin + pNOT hmin = 1) THEN [(phmin = ph) AND (pNOT hmin = pNOT h)] (7)

The true (exact) probability value of the hypothesis h cannot be determined
and known if the minimal probabilities of the hypothesis and anti-hypothesis do not sum
up to one, formula (8).

phmin + pNOT hmin < 1 (8)

The reason for the above situation is the insufficiency and scarcity of the evidence.
Unfortunately, we frequently have to deal with such situations in real problems. Values
of probability are then constrained by conditions given below.

0 ≤ p ≤ 1 (9)

0 ≤ phmin + phmax ≤ 2 (10)

0 ≤ pNOT hmin + pNOT hmax ≤ 2 (11)

0 ≤ phmin + pNOT hmin ≤ 1 (12)

0 ≤ phmax + pNOT hmax ≤ 2 (13)

Correctness of all above can be easily proved with use of detailed formulas that will be
given in next chapter. If the complete evidence set ECh is not realizable in a given problem
because of certain restrictions (e.g. it never can be collected), to approximately determine
the probability of the hypothesis one can use the satisfactory evidence completeness SEC.
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5 Uncertainty of probability

Let us now return to the binomial hypothesis pattern with the hypothesis set H =
{h,NOT h} = {h, h} which is well presented by coin tossing. In this case h means
the hypothesis of head domination, which also can be interpreted as “in the next toss a
head will be up”. Let us assume that we know from introductory experiments that head
dominates and its probability should not be less than phc = 0.55. Using Chernoff bound
method we calculate the number nSEC of tosses (evidence pieces) required for determining
of the hypothesis about head domination with accuracy (1− ǫ) = 0.99 which is equivalent
to the maximal error ǫ = 0.01 and achieve the result nSEC = 921. This number means
the satisfactory evidence completeness of the problem. Let’s analyze the first situation
and assume that in first experiments we got the following results: nh = 3 heads and
nNOT h = n

h
= 2 tails (not heads). Thus the evidence set Eh contains 3 confirmations

(evidence pieces) of head domination while the evidence set ENOT h = E
h
contains 2 con-

firmations of the anti-hypothesis about tail domination. The complete number n of all
evidence pieces that we momentary have at disposal equals 5 and is considerably smaller
than the satisfactory completeness nSEC = 921. What can be done for determining prob-
ability of the hypothesis h in a situation of such large information insufficiency? The
situation is illustrated by Fig. 5.

  0     1     2     3      nh                                                             nh             2     1     0

nh = 3                            nunc = nSEC – n = 921 – 5 =916                       nh = 2
uncertainty (future tosses)

satisfactory evidential completeness       nSEC = 921

      confirmations of the                                                 confirmations of the anti-
      hypothesis h (head)                                                  hypothesis h (NOT head)

Figure 5: An illustration of evidence insufficiency (lack of 916 evidence pieces) and un-
certainty caused by it in the task of determining the hypothesis h – probability of head
domination in a coin tossing experiment. In this case we have the small number n = 5
of evidence pieces, which is considerably smaller than the number nSEC required by the
satisfactory evidence set SEC.

As Fig. 5 shows, to get the required number of 921 evidence pieces further 916 coin
tosses would have to be made because only 5 toss results are at disposal now. Although
momentary results indicate head domination (nh = 3, n

h
= 2) next 916 tosses can change

this situation in a fully unknown way, e.g., they may prove the tail domination. Therefore
we are not allowed to formulate a categorical and hasty conclusion concerning the head
or tail domination on a basis of only 5 evidence pieces. Because the situation is very
uncertain our conclusions should be very cautious. The number of 5 evidence pieces
is very low in comparison with the required number nSEC = 921 however it delivers us
certain knowledge about probability and this knowledge can be used, though we should
not have too high expectations. In an extreme case, it is possible that all next 916
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tosses will give heads. Then head would be supported by 3 + 916 = 919 confirmations
(evidence pieces). Thus the maximal possible head probability that can be concluded
from 5 evidence pieces amounts to phmax = 919/921. And the minimal probability of
head domination phmin secured by 3 possessed evidence pieces is equal to phmin = 3/921.
Next, the minimal probability of the anti-hypothesis about tail domination equals to
2/921, because at present we have 2 confirmations of the tail domination. Because it is
possible that all next 916 tosses will give tail the maximal possible tail (anti-hypothesis)
probability p

hmax
equals (2 + 916)/921 = 918/921. It can be easily seen that each tail

confirmation increases its minimal probability p
hmin

at the value 1/921 (supports the tail)
and decreases the maximal possible probability phmax of “the opponent” head at the same
value (acts to disadvantage of the opponent). Because, most probably, certain part of
the future 916 tosses will give heads and the other part will give tails, the final, precise
probability value ph of the head will lie somewhere between the minimal phmin and the
maximal possible value phmax.

phmin ≤ ph ≤ phmax (3/921) ≤ ph ≤ (919/921)

Correspondingly, the true probability value p
h
of the anti-hypothesis h about the tail

domination will lie somewhere between its minimal and maximal value.

p
hmin

≤ p
h
≤ p

hmax
(2/921) ≤ p

h
≤ (918/921)

On a basis of the example analized, following formulas can be formulated.

phmin = nh/nSEC , phmax = 1− p
hmin

= 1− n
h
/nSEC (14)

p
hmin

= n
h
/nSEC , phmax = 1− phmin = 1− nh/nSEC (15)

The true and exact values of probability of the hypothesis h and of the anti-hypothesis
h are correlated and satisfy condition (16).

ph + p
h
= 1 (16)

This condition means that the exact probabilities of the hypothesis and anti-hypothesis
complement themselves to one. This situation is illustrated by Fig. 6.

If a commonly used formula (3) from the 5, suggested by frequency interpretation will
be used for determining the probability of hypothesis h about head domination, results
as below will be achieved.

ph = nh/n = 3/5 , p
h
= n

h
/n = 2/5 (17)

An important question arises: why only a value ph = 3/5 is suggested as probability
estimate of the hypothesis h and not some other value from the interval of possible values
[3/921, 919/921] shown in Fig. 6? Why the value 3/5 should be distinguished from other
values? Nevertheless, it is just as ‘good’ as any other value from the interval. The value
3/5 is not the true probability of the hypothesis, it is only a momentary frequency fr
resulting from only 5 evidence pieces (samples) being at disposal in the moment. Next
pieces could change it considerably.

Now, let us analyze the second situation in which we have not 5 but a consid-
erably larger number n = 700 of evidence pieces consisting of 399 heads (confirmations
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n = 5, nh = 3 (heads), n
h
= 2 (NOT heads)

ph

set of possible
combinations

(ph, ph)

        3/921                  3/5       919/921          head
       0.0033                 0.6                              hypothesis h
         phmin                   frh           phmax

         interval of possible ph-values

ph + ph = 1

ph
tail

anti-hypothesis h

918/921
0.9967

2/921
0.0022

2/5
0.4000

phmax

phmin

frh

Figure 6: Illustration of uncertainty of probability ph of the hypothesis h and p
h
of the

anti-hypothesis h identified on a basis of only 5 evidence pieces, what is considerably
smaller than the number of pieces nSEC = 921 required by the satisfactory evidence
completeness SECh.

of the hypothesis about head domination) and 301 tails confirming the anti-hypothesis
about tail domination. It means that the minimal head probability equals:

phmin = nh/nSEC = 399/921 = 0.433 ,

and the minimal tail probability equals:

p
hmin

= n
h
/nSEC = 301/921 = 0.430 .

The maximally possible head probability is equal to:

phmax = 1− p
hmin

= 1− (301/921) = 620/921 = 0.673 ,

and the maximally possible tail probability equals:

p
hmax

= 1− phmin = 1(399/921) = 522/921 = 0.567 .

The true value of probability of the hypothesis h of head domination is not known.
However, it is known that it is contained inside the determined limits. The same refers to
the anti-hypothesis. Summary of knowledge achieved on the basis of the mentioned 700
evidence pieces is given below.

(399/921) ≤ ph ≤ (620/921) , (301/921) ≤ p
h
≤ (522/921)

Successive probabilities achieved after 100, 200, . . . , 700 trials with coin are shown in
Table 4.
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n 0 100 200 300 400 500 600 700

nh 0 59 117 172 226 292 349 409

n
h

0 41 83 128 174 208 251 291

phmin 0 0.0641 0.1270 0.1868 0.2454 0.3170 0.3789 0.4441

phmax 1 0.9555 0.9099 0.8610 0.8111 0.7742 0.7275 0.6840

Table 4: Results of successive coin tosses. Denotation: n – number of trials, nh – number
of heads, n

h
– number of tails, phmin – the lower limit of the head probability ph, phmax –

the upper limit of head probability ph.
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n = nh + nh

n

nSEC = 921

n

nSEC = 921

nh

921 – nh

301
tails

399
heads

221
uncer-
tainty

ph

phmin

phmax

phmin

phmin

620/921

399/921

221/921
uncertainty

Figure 7: Illustration of uncertainty of probability ph of the hypothesis h of head domi-
nation achieved on the basis of n = 700 coin tosses (nh = 399 heads, n

h
= 301 tails) at

the required number nSEC = 921 of tosses, where: ph – tail probability.

As Fig. 7 shows, the 700 evidence pieces being now at disposal considerably decreased
uncertainty of probability ph of the hypothesis about head domination in comparison with
the first situation, where only 5 pieces were at disposal. Nevertheless, the uncertainty is
still considerable because the 221 tosses lacking to the full number of 921 tosses required
by satisfactory evidential completeness SEC may in different way change the present
situation. At present the head is dominating (phmin = 399/921 at p

hmin
= 301/921). But

if an appropriately larger part of the lacking 221 tosses will give tails then the tail can
become the dominating side of the coin. If these results of trials with a coin, n = 700,
nh = 399, n

h
= 301, were used for calculating the probability ph on the basis of the

frequency interpretation, results as the ones shown below would be achieved. Denotation
fr means relative frequency.

ph = frh = nh/n = 399/700 , p
h
= fr

h
= 301/700

Difference in results of both interpretations are considerable. They are shown in Fig. 8
Comparing Fig. 6 and 8, after an increase of trials from 5 to 700 (at the required

satisfactory number nSEC = 921) shows that a considerable decrease of the probability
uncertainty took place. Fig. 8 also shows the position of the result calculated on the basis
of the frequency interpretation of probability, that is of ph = 399/700 = 0.570. It would
not be easy to explain why just this value should represent the true but unknown (because
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ph

set of possible
combinations

(ph, ph)

              399/921  399/700  620/921             head
               0.4332    0.5700     0.6732             hypothesis h
                  phmin         frh          phmax

ph + ph = 1

ph
tail

anti-hypothesis h

522/921
0.5668

301/921
0.3268

301/700
0.4300

phmax

phmin

frh

interval of
possible

 ph-values

Figure 8: Comparison of results of determining the probability ph of the hypothesis h
about head domination and probability p

h
of the anti-hypothesis about tail domination

based on results of 700 trials (399 heads and 301 tails) calculated on the basis of the
completeness and the frequency interpretation.

of insufficient evidence) value of the probability ph. The value 399/700 suggested by the
frequency interpretation is neither more or less credible than any other probability value
from interval of possible values ph ∈ [399/921, 620/921].

Now, let us consider the third situation in which we possess the full satisfactory
set of evidence pieces of cardinality n = nSEC = 921, which consists of nh = 531 heads
and n

h
= 390 tails. Because we have the full evidence set, then on the basis of the

completeness interpretation we get results as below.

ph = nh/nSEC = 531/921 (head), p
h
= n

h
/nSEC = 390/921 (tail)

ph + p
h
= (531/921) + (390/921) = 1

Identical probability values are in this case achieved on the basis of the frequency
interpretation, because the value n of all trials which is used in the formula frh = nh/n
of this representation is in this case exactly equal to the satisfactory number nSEC (i.e.
n = nSEC = 921). The probability value ph = 531/921 of the hypothesis about head
domination is very close to the true value of this probability because the maximal error ǫ,
according to the Chernoff bound (4) does not exceed 0.01. The ideally exact probability
value cannot be determined, because it would require an infinitely large number of trials
with the coin. The results achieved are shown in Fig. 9.

Table 5 and Fig. 10 show a history of increase of the number of evidence pieces from
zero to the full number n = nSEC = 921 required by the evidence completeness SEC.

Fig. 10 shows how both probabilities, minimal phmin and maximal phmax change as the
number n of trials (and evidence pieces) increases and also how the gap (phmax − phmin)
between them, being the uncertainty of the determined probability ph, decreases. The
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ph

1-element set of
possible

combinations
(ph, ph)

                               531/921                          head
                                0.5765                           hypothesis h
                        phmin = phmax = ph

                   frequency interpretation

ph + ph = 1

ph
tail

anti-hypothesis h

390/921
0.4235

phmax = phmin= ph

frequency
interpretation

0
1

1

± 0.01

Figure 9: Illustration of results of determining probability ph of the hypothesis about
head domination and of probability p

h
of the anti-hypothesis about tail domination in a

situation of possession of the full satisfactory evidence set n = nSEC = 921 (531 heads
and 390 tails).

probability value ph = 531/921 = 0.5765 shown in Fig. 10 is not the ideally exact value
of the hypothesis probability ph about head domination, because determining it would
require an infinite number of trials. However, this value is a satisfactory approximation
of the probability ph. Its error, according to the Chernoff bound (4) does not exceeds
ǫ = 0.01.

n 0 100 200 300 400 500 600 700 800 900 nSEC = 921

nh 0 59 117 172 226 292 349 409 464 522 531

n
h

0 41 83 128 174 208 251 291 336 378 390

phmin 0 0.0641 0.1270 0.1868 0.2454 0.3170 0.3789 0.4441 0.5038 0.5668 0.5765

phmax 1 0.9555 0.9099 0.8610 0.8111 0.7742 0.7275 0.6840 0.6352 0.5896 0.5765

Table 5: Results of the experiment of coin tossing until realizing the full number of trials
nSEC = 921 required by the satisfactory evidence completeness SEC. Denotation: n – the
number of trials, nh – head number, n

h
– tail number, phmin – the minimal probability of

the hypothesis about head domination, phmax – the maximal probability of the hypothesis.
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Figure 10: Changes of the lower boundary phmin and the upper boundary phmax of the
probability ph in the course of approaching the satisfactory number nSEC = 921 of trials
by the number n.

6 The optimal representation phR of the uncertainty

interval [phmin, phmax] of the hypothesis’ probability ph

In real decision making issues a simplified singleton-representation is often necessary (one,
single number that is easily understandable for non-specialists). Therefore a question
arises: “Which probability value from interval [phmin, phmax] could fulfil this task the
best?”. To answer this question an optimality criterion has to be chosen. One of possible
criteria is given by (18).

phR = min[max(p∗
hR

− phmin, phmax − p∗
hR
)] (18)

p∗
hR

∈ [phmin, phmax]

It minimizes the maximal possible error of the representation phR in relation to the
precise but unknown probability value ph. Let us denote the best representation of the
probability interval by phR among all possible representations p∗hR contained in this inter-
val. The best representation is given by (19).

phR = 0.5(phmin + phmax) (19)

An important remark: the optimal representation phR usually is not the precise value
of the true probability ph (though sometimes it can be), because this probability cannot
be determined precisely (it would require an infinite number of trials). The optimal
representation is only the possibly best estimation of this value determined on the basis
of such number of trials we have at disposal at present. It is only an estimation towards
solving a problem and aiding decision making. Application of this representation in
conditions of partial ignorance prevents large and very large errors in problem solutions.
The representation phR is not the only possible representation of probability because
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also other representations can be proposed which can be generated by other criteria of
optimality. The optimal representation phR can be shown in a more detailed form than
(19) after joining in formulas (14) and (15).

phR = 0.5(phmin + phmax) = 0.5 + 0.5(nh − n
h
)/nSEC (20)

Analysis of the formula above allows for interesting conclusions. The completeness
estimation phR of probability depends linearly both on the number of evidence pieces nh

confirming the hypothesis h and the number n
h
of pieces confirming the anti-hypothesis

h. Each single confirmation of either the hypothesis or the anti-hypothesis changes the
completeness estimation by the same value equal to 0.5/nSEC. Confirmation of the hy-
pothesis increases its probability and confirmation of the anti-hypothesis decreases its
probability). It means that value of each single evidence piece (result of a coin toss) is
identical. But in case of the frequency estimate the situation is different. It results from
formula (21) proposed by the frequency interpretation.

frh = nh/n = nh/(nh + n
h
) , (21)

In this formula frh means relative frequency of confirmations of the hypothesis h in
the general number n of all evidence pieces. Further on, denotation frh will be used
for relative frequency as a distinction from the completeness estimate phR of
probability and from the true probability ph of the hypothesis. Dependence of
the frequency frh both from nh (the number of confirmations of the hypothesis h) and
n
h
(the number of confirmations of the anti-hypothesis h) is non-linear (both nh and

n
h
occur in the denominator of formula (21)). It means that a single confirmation of the

hypothesis h changes the frequency estimation frh at different absolute value than a single
confirmation of the anti-hypothesis h. Similarly, in case of two successive confirmations
of the hypothesis h the first confirmation changes the frequency estimation at a different
value than the second confirmation. It means that significance of single confirmations
(evidence pieces as results of coin tosses) is not alike and diverse, what is not logical and
difficult to explain. Attention to this fact has been drawn earlier by known scientists as
Hajek [7] and Burdzy [1].

An interesting thing is how the optimal representation phR changes with increasing
number n of evidence pieces (trial results) for n ≤ nSEC. Table 6 gives results of the coin
tossing experiment. Fig. 11 shows changes of the lower and upper limit of the probability
ph and of the optimal representation phR of the uncertainty interval of the completeness
estimate.

As Fig. 11 shows, at small number n of evidence pieces (trial results) the uncertainty
(phmax−phmin) of probability ph is very large. However, with increase of the pieces number
n the uncertainty successively decreases to a minimum (to the possible error ǫ = 0.01 in the
sense of Chernoff bound (4). Also the completeness estimation phR of probability ph, with
increasing number n of evidence pieces, successively and without fluctuations approaches
its end value 531/921 = 0.5765. Credibility of the calculated probability ph = 531/921
equals 0.99, what means that if we would repeat the series of 921 tosses 100 times, then
in only one series (of the 100 series) the value ph calculated from a single series will differ
from the true ph-value more than at ǫ = 0.01. Table 6 and Fig. 6 present changes of the
completeness estimation phR at large number n of evidence pieces till n = 921.

Following Table 7 presents successive results of an example series of 10 coin tosses
and calculated results of probability estimates. Fig. 12 shows changes of the compared
estimates phR and frh for small number of evidence pieces n ≤ 10 given in Table 7.

23



n 0 100 200 300 400 500 600 700 800 900 nSEC = 921

nh 0 59 117 172 226 292 349 409 464 522 531

n
h

0 41 83 128 174 208 251 291 336 378 390

phmin 0 0.0641 0.1270 0.1868 0.2454 0.3170 0.3789 0.4441 0.5038 0.5668 0.5765

phr 0.5 0.5098 0.5185 0.5239 0.5282 0.5456 0.5532 0.5641 0.5695 0.5782 0.5765

phmax 1 0.9555 0.9099 0.8610 0.8111 0.7742 0.7275 0.6840 0.6352 0.5896 0.5765
nh

n
– 0.5900 0.5850 0.5733 0.5650 0.5840 0.5817 0.5843 0.5800 0.5800 0.5765

|∆| – 0.0802 0.0665 0.0494 0.0368 0.0384 0.0285 0.0202 0.0105 0.0018 0

Table 6: Example results of coin tosses. Denotation: n – number of all tosses, nh – head
number, n

h
– tail number, phmin – the lower limit of probability ph of the hypothesis, phmax

– the upper limit of the probability ph of the hypothesis, phR – the optimal representation
of the uncertainty interval of ph (estimate of this probability), nh/n = frh – hypothesis
probability calculated according to the frequency interpretation, ∆ = phR − nh/n – dif-
ference between probability estimates determined according to the completeness and the
frequency interpretation.
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Figure 11: Illustration of the decreasing process of the uncertainty interval [phmin , phmax]
of the probability ph of the hypothesis and of concurrent changes of the completeness
estimate phR of this probability with increasing number of evidence pieces (results of coin
tosses).
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n 0 1 2 3 4 5 6 7 8 9 10

nh 0 1 2 2 3 3 4 4 5 5 6

n
h

0 0 0 1 1 2 2 3 3 4 4

phmin 0 0.0011 0.0022 0.0022 0.0033 0.0033 0.0043 0.0043 0.0054 0.0054 0.0065

phr 0.5 0.5385 0.5011 0.5005 0.5011 0.5005 0.5011 0.5005 0.5011 0.5005 0.5011

phmax 1 1 1 0.9989 0.9989 0.9978 0.9978 0.9967 0.9967 0.9956 0.9956
nh

n
– 1 1 0.6667 0.7500 0.6000 0.6667 0.5714 0.6250 0.5555 0.6000

|∆| – 0.4615 0.4999 0.1662 0.2498 0.0995 0.1656 0.0709 0.1239 0.0550 0.0989

Table 7: Results of successive 10 coin tosses and corresponding values of the lower limit
phmin and the upper limit phmax of the estimated probability ph, the completeness estimate
phR, and the frequency estimate frh = nh/n, and of the absolute difference of both
estimates |∆| = phR − nh/n|.
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Figure 12: Changes of the completeness estimate of probability phR and of the frequency
estimate frh = nh/n for small number of evidence pieces n ≤ 10.

Fig. 12 makes us aware how non-credible the frequency estimation is at a small num-
ber n of evidence pieces. If we only have one piece (n = 1, the single case problem)
then the frequency estimate can have either a value of 1, as in the example in Fig. 12,
or a zero-value. It means that this estimate, based only on one evidence piece, suggests
extreme values of probability (certainty). Such strong conclusions inferred from only one
piece of evidence are exaggerated and hasty. To be sure, at increasing number n of evi-
dence pieces the frequency estimate step by step approaches the true value of probability
ph of the hypothesis, but its course shows considerable fluctuations, which means that
successive evidence pieces (results of coin tosses) considerably change estimated proba-
bility value. The frequency interpretation is also not able to determine any probability
value for zero number of evidence pieces (in situation of lack of any evidence). We have
then, following the formula frh = nh/n, to deal with division by zero. Result of such
operation cannot be determined. Instead, the completeness interpretation gives credible
result both for zero-number of evidence pieces (phR = 0.5) and for one piece. Similarly,

25



credible results can be obtained for any number of pieces. The course of this estimate
shows very small fluctuations, considerably smaller than in case of the frequency esti-
mate. The completeness estimate can be compared to the person that does not change
strongly her/his opinions after achievement of every following evidence piece but makes
it carefully and with consideration. This estimate step by step approaches the true value
of probability ph, which is shown in Fig. 11. At a large number n of evidence pieces both
estimates are similar. However, the frequency estimate frh can show distinct fluctuations
also at a large number of pieces whereas the completeness estimation shows imperceptible
small fluctuations. Fig. 13 shows, in front view, the functional surface of the dependence
of the hypothesis probability understood in the sense of the frequency interpretation as a
relative frequency frh = nh/(nh + n

h
).

frh
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Figure 13: The functional surface of the dependence of the relative frequency frh =
nh/n = nh/(nh + n

h
) from the confirmation number nh of the hypothesis h and the

confirmation number n
h
of the anti-hypothesis h in rear view.

The curved, nonlinear surface of the dependence frh = nh/(nh+n
h
) explains well why

successive hypothesis confirmations (successive heads) do not have the same evidential
significance (weight). Depending on the current evidential situation, (i.e. current number
nh of the hypothesis and of the number n

h
of the anti-hypothesis confirmations), an

addition of a single evidence piece causes not equal but different changes of the frequency
frh, which testifies the uneven significance of identical evidence pieces in the frequency
representation of probability. As we will see, the completeness interpretation of probability
treats all evidence pieces in the same way and assigns an identical weight to each of them,
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independently of current evidential state, i.e. current nh and n
h
values.
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Figure 14: Functional surface of dependence of the relative frequency frh = nh/n =
nh/(nh + n

h
) of the hypothesis h on the number nh of the hypothesis confirmations and

the number n
h
of the anti-hypothesis confirmations, in rear view, where nSEC is the

number of confirmations required by the satisfactory evidential completeness SEC of the
hypothesis.

Figure 14 shows well the reasons for illogicality of the results delivered by the frequency
interpretation in certain situations. The functional surface of the dependence frh =
f(nh, nh

) is a nonlinear surface that possess insensitivity zones at its borders. And so, if
there are no confirmations of the anti-hypothesis h (n

h
= 0) but there are confirmations of

the hypothesis h (nh > 0) then, independently of how large the number nh of these pieces
is whether it equals 1 or 2 or 10 or 100 or 1000000), the frequency estimate of probability
frh is always equal to 1 and does not change with increasing number nh of evidence
pieces. In this case there exist no dependence between the confirmation number nh of the
hypothesis (the strength of its evidence) and its probability. Yet it is logical that with a
change of the number of the hypothesis confirmations its probability also should change
instead of being constant and invariable. Thus, the relative frequency frh does not map
the hypothesis probability ph at the lack of the anti-hypothesis confirmations (n

h
= 0).

As we will see further on, the completeness interpretation of probability is devoid this
fault and in logical and convincing way informs about the hypothesis probability.

Figure 15 presents 3 functional dependencies resulting from the completeness inter-
pretation of probability: phmin = f1(nh, nh

), phmax = f3(nh, nh
) and phR = f2(nh, nh

).
This figure shows particularly well the convergence of the lower and upper border of the
hypothesis probability and its estimate. The convergence of these 3 functional surfaces
into one straight line takes place at the number of pieces n = nh + n

h
= nSEC required

by the satisfactory evidence set SEC. Then the lower and upper border of the hypoth-
esis probability sums up to one independently of the proportion of the hypothesis and
anti-hypothesis confirmation numbers nh/nh

.

phmin + phmax = 1

If the total number of all evidence pieces nh + n
h
= n < nSEC then the lower and

upper limit of the probability does not sum up to one and their difference (phmaxphmin)
represents uncertainty of our knowledge about the true value of the hypothesis probability
ph. Figure 16 shows the same functional surfaces in the rear view.
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resulting from the completeness interpretation of probability, in front view.
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Figure 16 shows well the evaluation of the hypothesis probability ph by the complete-
ness interpretation at a lack of anti-hypothesis confirmations n

h
= 0 and at existing (or

not) confirmations of the hypothesis nh ≥ 0. With the increase of the number nh of
hypothesis confirmations the minimal value phmin of the hypothesis probability also in-
creases, which is logical. But the upper limit phmax does not increase what logically results
from the fact that the number of the anti-hypotheses confirmations does not change, it is
constant and equal to zero (n

h
= 0). The border, special situations are still better pre-

sented and explained by Fig. 17 and Fig. 18. Fig. 17 shows a comparison of probability
ph of the hypothesis resulting from the frequency and completeness interpretations in the
special situation when there are evidence pieces confirming the hypothesis (nh ≥ 0) but
there are no pieces confirming the anti-hypothesis (n

h
= 0). An example of such situation

is the situation of a physician who investigates probability of the following hypothesis h:
“regular sport practicing prevents obesity” and who possess in his data base data of 10
persons that practice sport regularly and are slim. Thus, they confirm the hypothesis h
of the physician (nh = 10). However,at present he does not have examples of persons that
confirm the anti-hypothesis NOT h = h, i.e. of persons that regularly practice sport but
are not slim. Thus, the number of the anti-hypothesis confirmations is nh = 0. Should the
physician infer from this data basis that regular sport practicing in any case and always
secures slimness (ph = 1 and p

h
= 0)? It would be good to have the above example in

mind when reading the lecture further on.
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Figure 17: Comparison of probabilities ph of the hypothesis h generated by the complete-
ness (a) and the frequency interpretation of probability (b) in a situation of existence of
hypothesis confirmations (nh ≥ 0) and non-existence of the anti-hypothesis confirmations
(n

h
= 0).

As Fig. 17a shows, with an increasing number nh of the hypothesis confirmations the
completeness interpretation of probability generates higher values of the lower limit phmin

of the hypothesis probability without changing the upper probability limit phmax which
depends on the confirmation number n

h
of the anti-hypothesis. Because this number is

constant and equal to zero the value of phmax is also constant and equal to 1, accord-
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ing to the formula given in the figure. Instead, the frequency interpretation shown in
Fig. 17b does not react at all to an increase of the number nh of the hypothesis con-
firmations and generates a constant value of the probability estimate frh = 1, which is
not logical. Additionally, the frequency estimate is not able to assign any probability
value for the evidential state nh = 0 and n

h
= 0 because we would have to deal with

the undetermined state of division by zero. Instead, in this situation the completeness
interpretation generates a credible estimate of probability equal to 0.5 (in the sense of the
optimal representation of the uncertainty interval that is here maximal and equal to 1).

Fig. 18 shows a comparison of probabilities generated by the completeness and by
the frequency interpretation for situation that is inverse to the one presented in Fig. 17,
where there are only evidence pieces confirming the anti-hypothesis (tail domination)
i.e. n

h
≥ 0, nh = 0 (there are no confirmations of the head domination). Reading

the explanations given further on it would be good to keep in mind the example of a
policeman who investigates probability of the following hypothesis h: “A driver who
drives very fast causes accidents”. Let us assume that the policeman at present has in
his data base only 10 drivers who drive very fast but haven’t had any accidents. These
are examples confirming the anti-hypothesis “A driver who drives very fast does not
cause accidents”. Thus n

h
= 10 and nh = 0 because the policeman has no examples

confirming the hypothesis h, that is, he has not examples of drivers who drive very fast
and had accidents. Should the policeman infer on the basis of his present evidence (as
the frequency interpretation suggests) that, with probability 1, very fast driving does not
cause accidents?
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Figure 18: Comparison of probabilities generated by the completeness (a) and the fre-
quency (b) representation of probability in a special case when only evidence pieces that
confirm the anti-hypothesis are at disposal (n

h
≥ 0) and no pieces that confirm the

hypothesis (nh = 0) exist.

Fig. 18a shows that because the number of hypothesis confirmations nh is constant
and equal to zero, the minimal probability phmin of this hypothesis is also constant and
equal to zero (phmin = 0). At the beginning, at lack of confirmations or at small number
n
h
of the anti-hypothesis confirmations the maximal probability phmax of the hypothesis is
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high. However, along with the increase of the confirmation number n
h
of anti-hypothesis,

the possible maximal probability of the hypothesis decreases, which is logical, because
confirmations of the anti-hypothesis decrease potential chances of the hypothesis. Instead,
in case of the frequency interpretation presented in Fig. 18b, independently of how large
is the number n

h
of the anti-hypothesis confirmations is, which still decreases chances

of the hypothesis, this interpretation suggests a constant and equal to zero value as the
estimate frh of the hypothesis probability. This phenomenon can be interpreted as follows:
“because I have no evidence pieces that confirm the hypothesis I fully exclude its truth
fulness, also the minimal one”.

7 Summary

The lecture presented a new interpretation of probability that does not possess a number
of faults and weaknesses of the frequency interpretation. In particular, the completeness
interpretation in a sensible and credible way models probability in certain critical, special
situations such as at small number of evidence pieces and at a lack of pieces confirming
the truth of one of the hypotheses. The frequency interpretation does not give credible
values of probability in this situations. And a case of a small number of samples is the
one that we meet often in real problems. Thus, the application range of the completeness
interpretation can be much wider than the range of the frequency interpretation, which
gives correct results only at a great number of evidence pieces. The completeness interpre-
tation allows us to visualize that in many cases the true and precise value of probability
cannot be learned and that we can only determine the lower and upper limit of proba-
bility. That represents the uncertainty and vagueness of probability. In this lecture the
completeness interpretation was presented for the simplest, binomial hypothesis set, i.e.
H = {h,NOT h}. Leaving this particular case, the completeness interpretation can be
widened for the trinomial-, tetranomial-, pentanomial-, . . . , multinomial case. The lec-
ture presented the first investigations on the completeness interpretation of probability.
This subject is quite new and anybody interested in problems of uncertainty is invited to
investigate it. The author will publish his new results in next lectures and papers.
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