
SYNTAX AND MEANING OF

PROLOG PROGRAMS

Ivan Bratko

University of Ljubljana

These slides are meant to be used with a Prolog system to demonstrate

the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides alone are not

self-sufficient.

DATA OBJECTS

 data objects

 simple objects structures

 constants variables

 atoms numbers

SYNTAX FOR DATA OBJECS

• Type of object always recognisable from its syntactic

form

THREE SYNTACIC FORMS FOR ATOMS

(1) Strings of letters, digits, and “_”, starting with

 lowercase letter:

 x x15 x_15 aBC_CBa7

 alpha_beta_algorithm taxi_35

 peter missJones miss_Jones2

ATOMS, CTD.

(2) Strings of special characters

 ---> <==> <<

 . < > + ++ ! .. .::. ::= []

ATOMS, CTD.

(3) Strings in single quotes

 „X_35‟ „Peter‟ „Britney Spears‟

SYNTAX FOR NUMBERS

• Integers

 1 1313 0 -55

• Real numbers (floating point)

 3.14 -0.0045 1.34E-21 1.34e-21

SYNTAX FOR VARIABLES

• Strings of letters, digits, and underscores, starting with

uppercase letter

 X Results Object2B Participant_list

 _x35 _335

• Lexical scope of variable names is one clause

• Underscore stands for an anonymous variable

• Each appearance of underscore: another anon. var.

ANONYMOUS VARIABLES

visible_block(B) :-

 see(B, _, _).

Equivalent to:

visible_block(B) :-

 see(B, X, Y).

STRUCTURES

• Structures are objects that have several components

• For example: dates are structured objects with three

components

• Date 17 June 2006 can be represented by term:

 date(17, june, 2006)

 functor arguments

• An argument can be any object, also a structure

FUNCTORS

• Functor name chosen by user

• Syntax for functors: atoms

• Functor defined by name and arity

TREE REPRESENTATION

OF STRUCTURES

Often, structures are pictured as trees

 date(17, june, 2006)

 date

 17 june 2006

• Therefore all structured objects in Prolog can be viewed

as trees

• This is the only way of building structured objects in

Prolog

SOME GEOMETRIC OBJECTS

 P2 = (2,3) (6,4)

 S T

 (4,2)

 P1=(1,1) (7,1)

P1 = point(1, 1) P2 = point(2, 3)

S = seg(P1, P2) = seg(point(1,1), point(2,3))

T = triangle(point(4,2), point(5,4), point(7,1))

LINE SEGMENT

S = seg(point(1,1), point(2,3))

 S = seg

 point point

 1 1 2 3

ARITHMETIC EXPRESSIONS

ARE ALSO STRUCTURES

• For example: (a + b) * (c - 5)

• Written as term with functors:

 *(+(a, b), -(c, 5))

 *

 + -

 a b c 5

MATCHING

• Matching is operation on terms (structures)

• Given two terms, they match if:

 (1) They are identical, or

 (2) They can be made identical by properly

 instantiating the variables in both terms

EXAMPLE OF MATCHING

• Matching two dates:

 date(D1, M1, 2006) = date(D2, june, Y2)

• This causes the variables to be instantianted as:

 D1 = D2

 M1 = june

 Y2 = 2006

• This is the most general instantiation

• A less general instantiation would be: D1=D2=17, ...

MOST GENERAL INSTANTIATION

• In Prolog, matching always results in most general

instantiation

• This commits the variables to the least possible extent,

leaving flexibility for further instantiation if required

• For example:

 ?- date(D1, M1, 2006) = date(D2, june, Y2),

 date(D1, M1, 2006) = date(17, M3, Y3).

 D1 = 17, D2 = 17, M1 = june, M3 = june,

 Y2 = 2006, Y3 = 2006

MATCHING

• Matching succeeds or fails; if succeeds then it results in

the most general instantiation

• To decide whether terms S and T match:

 (1) If S and T are constants then they match only if they

are identical

 (2) If S is a variable then matching succeeds, S is

instantiated to T; analogously if T is a variable

 (3) If S and T are structures then they match only if

 (a) they both have the same principal functor, and

 (b) all their corresponding arguments match

MATCHING ≈ UNIFICATION

• Unification known in predicate logic

• Unification = Matching + Occurs check

• What happens when we ask Prolog:

 ?- X = f(X).

 Matching succeeds, unification fails

COMPUTATION WITH MATCHING

% Definition of vertical and horizontal segments

vertical(seg(point(X1,Y1), point(X1, Y2))).

horizontal(seg(point(X1,Y1), point(X2, Y1))).

?- vertical(seg(point(1,1), point(1, 3))).

yes

?- vertical(seg(point(1,1), point(2, Y))).

no

?- vertical(seg(point(2,3), P)).

P = point(2, _173).

AN INTERESTING SEGMENT

• Is there a segment that is both vertical and horizontal?

?- vertical(S), horizontal(S).

S = seg(point(X,Y), point(X,Y))

• Note, Prolog may display this with new variables names

as for example:

S = seg(point(_13,_14), point(_13, _14))

DECLARATIVE MEANING

• Given a program P and a goal G,

 G is true (i.e. logically follows from P) if and only if:

 (1) There is a clause C in P such that

 (2) there is a clause instance I of C such that

 (a) the head of I is identical to G, and

 (b) all the goals in the body of I are true

• An instance of a clause C is obtained by renaming each

variable in C and possibly substituting the variable by

some term. E.g. an instance of

 p(X,Y) :- q(Y,Z)

 is

 p(U,a) :- q(a,V).

DECLARATIVE vs PROCEDURAL

MEANING OF

PROLOG PROGRAMS

• Consider:

 P :- Q, R.

• Declarative readings of this:

• P is true if Q and R are true.

• From Q and R follows P.

• Procedural readings:

• To solve problem P, first solve subproblem Q and then R.

• To satisfy P, first satisfy Q and then R.

PROCEDURAL MEANING

• Specifies how Prolog answers questions

• Procedural meaning is an algorithm to execute a list of goals

given a Prolog program:

 program

 success/failure indication

 goal list execute

 instantiation of variables

procedure execute(Program, GoalList, Success)

• execute = declarative meaning + procedural elements

G is true (i.e. logically follows from P) if and only if:

 (1) there is a clause C in P such that

 (2) there is a clause instance I of C such that

 (a) the head of I is identical to G, and

 (b) all the goals in the body of I are true

Search program from top to bottom to find such clause

Match G and

head of C
Execute goals in order as they

appear in program

