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ABSTRACT

We analyze the Belton and Gear rank reversal problem within an axiomatic framework for deriving
consistent weight ratios from pairwise ratio matrices and aggregating weights and ratio matrices. We
show that rank reversal in the Analytic Hierarchy Process (AHP) is avoided when the output of the
process is properly redefined as a weight-ratio matrix (rather than a normalized-weight vector) and
multiplicative procedures — the geometric mean and the weighted-geometric-mean aggregation
rule — which preserve the underlying mathematical structures are used.
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RESUME

Dans cet article on présent un cadre axiomatique qui permet d’obtenir des quotients consistents de
poids dans la AHP (Analytic Hierarchy Process, Methode des Hierarchies Multiples) en partant
d’une matrice de comparaisons par paires. Ensuite, on analyse la procédure d’agrégation. On
montre qu’un renversement de I'ordre des poids finaux est évité par les opérations multiplicatives —
la moyenne géométrique pour calculer les poids partiels des alternatives et ’agrégation géométrique
pondérée pour obtenir les poids finaux. Ces opérations multiplicatives maintiennent la structure
mathématique sous-jacente. Lexample fameux de Belton et Gear illustre les résultats.

1. INTRODUCTION

We resolve Belton and Gear’s rank reversal problem [4] in the Analytic Hierarchy Process (see
[10]), by extending the axiomatic framework established in [1] to aggregation rules. The extended
framework addresses the issues of extracting consistent weights from inconsistent weight matri-
ces, normalization, rank reversal and inter-level aggregation rules in both the multiplicative and
additive cases. Other issues which are not directly related to these topics (systems with feedback,
appropriateness of the underlying scale, etc.) will be dealt with in future work. This is an axiomatic
(i.e. mathematical) framework, which enables us to gain insight into problematic aspects of the un-
derlying structure and to identify a consistent variant of the AHP. The framework does not address
behavioral issues and is therefore independent of the way in which decision makers express their
preferences. In other words, assuming that preferences have been expressed in the standard AHP
format of estimated weight ratios (weight differences in the additive case), we provide a consistent
axiomatic framework for extracting and aggregating weights from the data.

Because it appears from Belton and Gear’s discussion that the reason for the rank reversal
phenomenon is improper normalization of the weight vectors, earlier work (e.g. Belton and Gear
[4], Harker and Vargas [8] and Saaty and Vargas [11], [12]) concentrated on

e proposing a normalization immune to rank reversal;
e proving that previously proposed normalizations are not immune to rank reversal;
e legitimizing rank reversals.

More recently, the exchange [14,6,13,9,7] in the March 1990 issue of Management Science is a clear
indicator of the importance of resolving this controversy, which we do by showing that rank rever-
sal can be avoided if a multiplicative aggregation rule is used and normalized weight vectors are
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replaced with weight-ratio matrices. (While the underlying presumption that one can extract abso-
lute weights from weight ratios has never been challenged in the literature, it is clear that one can
at most hope to retrieve consistent weight ratios — as opposed to absolute weights — from approx-
imate weight ratios.) Naturally, the structure established in [1,3] provided us the clues needed to
solve the rank reversal problem; the solution, in turn, confirms the correctness of this structure.

2. THE RANK REVERSAL PROBLEM

Belton and Gear consider in their Example 1 the three judgement matrices over three alternatives

A,Band C:
1 1/9 1 1 9 9 1 8/9 8
9 1 9], 1/9 1 1], 9/8 1 9],
1 1/9 1 1/9 1 1 1/8 1/9 1

and their corresponding normalized weight vectors

(1/11) (9/11) (8/18)
9/11 |, 111 |, 9/18 | .
1/11 1/11 1/18

These vectors are combined (by taking their arithmetic mean) to produce the overall weight vector

1 1/11 1 9/11 1 8/18 0.451
w*=§ 9/11 +§ 1/11 +§ 9/18 | = | 0470 | . 1)
1/11 1/11 1/18 0.079
In Example 2 they introduce an additional alternative, D, with judgement matrices
1 1/9 1 1/9 1 999 1 8/9 8 8/9
9 1 9 1 1/9 1 1 1 9/8 1 9 1
119 1 19}’ 1/9 1. 1 1}’ 1/8 1/9 1 1/9})°
9 1 9 1 1/9 1 1 1 9/8 1 9 1
and corresponding normalized weight vectors
1/20 9/12 8/27
9/20 1/12 9/27
1/20 }° 1/12 |}’ 1/27 }°
9/20 1/12 9/27
yielding the overall weight vector
1/20 9/12 8/27 0.365
_1{9/20 141 1/12 119/27) 0289
=3 120 | T3|112] 3} 127] = | 0057 |- 2)
9/20 1/12 9/27 0.289

They then observe that w} < w} but w; > w so that the two sets of rankings are not consistent: the
rank of A and B is reversed as a result of the inclusion of alternative D, even though the pairwise
weight ratios associated with alternatives A, B, and C are unchanged and D is, in fact, a copy of B.

Clearly, if the AHP procedure generates rank reversals in the case of consistent input matrices,
rank reversal can be expected in the inconsistent case as well. The following examples demonstrate
this point. A straightforward calculation shows that the judgement matrices

(1 1/9 1) ( 1 9 9) ( 1 8/9 8)
9 1 8], 19 1 8/9], 9/8 1 8],
1 1/8 1 1/9 9/8 1 1/8 1/8 1
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0.455
vt = 0461 |. 3)
0.084

When alternative D is added as above, the judgement matrices are

yield the overall weight vector

1 1/9 1 1/9 1 9 9 9 1 8/9 8 8/9
9 1 8 1 19 1 8/9 1 9/8 1 8 1
1 1/8 1 1/8)° 1/9 9/8 1 9/8})° 1/8 1/8 1 1/8 |’
9 1 8 1 1/9 1 8/9 1 9/8 1 8 1
and the overall weight vector is
0.367
Y= 0.286
0.061
0.286

Again, vi < v3 but vy > v, and the rank of 4 and B is reversed as a result of the inclusion of
alternative D.

3. NO NORMALIZATION CAN PREVENT RANK REVERSAL

For the example above, we see by comparing equations (1) and (2) that the difference in relative
magnitude of the components of the overall weight vectors w* and w is due to the normalization
factors applied to the weight vectors. Explicitly, if the vector z is obtained from the (positive) vector
x by the additive normalization z; = x;/ ", x;, then any component z; is sensitive to changes in
any other component x;. Clearly, the same is true when a component is added tox — the essence
of normalizing a vector is to adjust some (or all) of its components on the basis of the magnitude of
other components. Since this is true for all normalizations, it follows that there does not exist any
normalization which avoids rank reversal:

Theorem 1.

For any normalization, there exists a set of vectors exhibiting rank reversal.

Proof.
Consider the vectors
X1 N
X2 Y2
. + | .
Xn Yn
and

x1/m(x) y1/m(y)

X2 /m(x) . y2/m(y)

¥

Xn/m(x) Yn/m(y)
where m(x) is a fixed but otherwise arbitrary normalization applied to the vector x. (Typical ex-
amples are: m(x) = Y| x, m(x) = [[._;x and m(x) = max;{x;}.) Clearly, for any arbitrary
choice of m(x), by adjusting the values of x, and y,, one can always select vectors x,y for which
x1 +y1 > x2 +y2 while x; /m(x) +y1/m(y) < x2/m(x) +y2/m(y). °

In particular, for the normalization proposed by Belton and Gear in [4], the components of the
normalized vector are unchanged until a certain threshold is attained. But this normalization too,
as pointed out by Saaty and Vargas in [12], is subject to rank reversal.
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4. NOTATION
The matrices below are n x n, vectors are n-dimensional, and:

A = (ay) is a pairwise multiplicative matrix if 0 < a; = 1/aj;;

w = (wy) is a multiplicative weight vector if w > 0 and [Tz_y wi = 1;

C = (c;j) is a multiplicative consistent matrix if c; = w; /w; for some multiplicative weight vector
w;

A%, w* and C* are the sets of all pairwise multiplicative matrices, multiplicative weight vectors
and multiplicative consistent matrices, respectively;

f* is the set of all mappings from 4> tow*.

¢* is the set of all mappings from A* to C*.

Note that A%, w* and C* are groups under componentwise multiplication and C* is isomorphic
tow>.

5. REPRESENTATION IN C*

The weight vectors retrieved from pairwise comparison matrices in the AHP are determined only
up to a multiplicative factor. These vectors can therefore be represented by normalized proxies
or, since C* is isomorphic to w*, by matrices of the form (w;/w;). For the purpose of studying
the problem of retrieving weights from pairwise comparison matrices, the choice of representation
is immaterial (see e.g. [1] or [3]). However, it follows from the above that these representations
are not equivalent as far as aggregating weights and ratio matrices is concerned. More importantly,
weight ratios are preserved when normalized weight vectors are replaced by weight ratio matrices
because no extraneous normalization factors are introduced. Indeed, the matrix representation for
the examples above yields

(119 1y (1 99\ (1 898
wr=2(o 1 9)+z[1/9 1 1)+z[98 1 9 (1)
3\1 19 1) 3\upe 1 1) 3\us 191

1 3333 6
=13412 1 6.333

0412 0407 1

and ‘
11/9 1 1/9 1 9909 1 89 8 89
19 1 9 1 1{1911 1) 198 1 9 1 ,
W=311 19 1 10 *3)10 11 1)" 35|18 191 19] &
9 1 9 1 179 1 1 1 98 1 9 1

1 3333 6 3333
3.412 1 6333 1
0412 0407 1 0407
3.412 1 6333 1

The relative ranking of alternatives A and B is unchanged since the numerical value of wi/w, is
preserved — in fact, W* is a principal minor of W (that is, W* is obtained by deleting certain rows
and the same numbered columns of W). '

6. AXIOMS FOR AGGREGATION RULES

Let F be an aggregation rule for combining / positive weights and n x n matrices. This rule is then
a mapping from the set of all {Ay, ..., \; A1,...,4;} to the set of positiven x n matrices.
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Guided by the examples above and the underlying multiplicative structures, we postulate ax-
ioms for aggregation rules and prove that the weighted-geometric-mean aggregation rule satisfies
these axioms and, consequently, is immune to rank reversal.

Axiom 1.

The aggregation rule F satisfies
F(Ala---yAI;P(A1)7'--yP(Al)) =P(F(A1,---’Al;Ala""Al))7

where the operator P denotes taking a (fixed) principal minor of the appropriate matrices.
Axiom 2. -

If the input matrices of F are consistent, so is its output matrix:
AreC* k=1,...,1 = F(/\l,...,)\l;Al,...,AI)GCX.

Axiom 3.

For some ¢ € ¢*,
F(, .o N5 9lA1), ..., 9(A1)) = ¢(F (A, .., N AL, - -, A1)

The significance of Axiom 1 is that if P(A4) is a principal minor of 4, then P(A4) and A4 represent
the same judgment ratios over the subset of objects they have in common. It follows directly from
the definition that if F satisfies Axiom 1, the weight ratios of the common objects are identical and
therefore not affected by the inclusion of additional objects. Formally:

Theorem 2.
An aggregation rule satisfying Axiom 1 is not subject to rank reversal.

Axiom 2 is needed since an arbitrary aggregation rule may produce matrices which are neither
consistent nor even pairwise multiplicative, as is the case for W* and W in (1’) and (2’) above.
That the arithmetic mean destroys this property is not surprising in view of our earlier analysis of
the underlying algebraic structure (see Barzilai et al. [1,2,3]).

Axiom 3 means that if the input pairwise multiplicative matrices are converted — using the
mapping ¢ — to their consistent representative matrices and the resulting multiplicative consistent
matrices are aggregated using the rule F, the result obtained is the same as when the input pairwise
multiplicative matrices are first aggregated using the rule F and the pairwise multiplicative matrix
obtained in this manner is then converted to its consistent representative matrix using the mapping
¢. In other words, the final result is independent of the order of operation.

Keeping in mind the underlying multiplicative structures, it is easy to extend the observations
in §5:

Theorem 3.

The weighted-geometric-mean aggregation rule*

FQ,y.o M Ay, AD) = [ [ 42
k=1

satisfies Axioms 1-3.

* All operations are carried out componentwise.
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Proof.

For objects i and j belonging to the principal minor corresponding to the operator P, both sides of
the equation defining Axiom 1 are given by

)
H(aif)]i‘k’

where (a;)x denotes the ij element of 4. Therefore, F satisfies Axiom 1.
Next, note that form = 1,...,1, A, € C* is equivalent t0 (@;)m (@jx )m(@xi)m = 1. This implies

H(a,,),,. H(a,k);,m H(ah)xm _

so that F(\q, ..., N; 41, ... ,A;) is consistent. Hence F satisfies Axiom 2.
Finally, in conjunction with the geometric mean mapping defined by

[Ti=19i ) e

[Tk

FA) = W = (wy) wif=(

the weighted-geometric-mean aggregation rule satisfies Axiom 3 since

fI( 1<a,k)”") H( @y )””_

met \ k= 1(a1k)1/n k=1 1(a1k)m
which completes the proof .
To illustrate the above, the weighted-geometric-mean produces for the Belton and Gear examples
the matrices
1 19 1\ 1 9 9\ 1 8/9 8\’
vr={9 1 9} x[1/9 1 1 x|9/8 1 9 1"
1 1/9 1 1/9 1 1 1/8 1/9 1
1 0961 4.160
= | 1.040 1 4.327
0240 0231 1
and
1 1/9 1 1/9\? 1 9 9 9\ 1 8/9 8 8/9\?
{9 1 9 1 19 1 1 1 9/8 1 9 1 "
U=l1 19 1 19 *l1 11 1] *|18 19 1 1/9 (2%)
9 1 9 1 179 1 1 1 9,8 1 9 1

1 0961 4.160 0.961
1.040 1 4327 1 .
0.240 0.231 1 0231}’
\ 1.040 1 4.327 1

U* and U are (consistent) pairwise multiplicative and U* is a principal minor of U. Thus, the
ranking of alternatives A, B and C under U* and U is identical.
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7. CONCLUSIONS

By adding new axioms, the axiomatic framework for deriving consistent weight ratios from pairwise
ratio matrices developed in [1] has been extended to deal with aggregation rules for combining
weights and ratio matrices. Within this extended framework, we have demonstrated that the AHP
rank reversal controversy has centred on the wrong issues. Rank reversal is neither a fatal flaw of
the AHP, nor a desirable property of it — when the correct structure is used, rank reversal does not
occur. It is a symptom of inherent problems with the AHP: the output of the process is improp-
erly defined as weights rather than weight ratios, and non-multiplicative procedures (the weighted
arithmetic mean and the eigenvector) are imposed on an intrinsically multiplicative structure.
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