
PROLOG LISTS,

OPERATORS, ARITHMETIC

Ivan Bratko

University of Ljubljana

These slides are meant to be used with a Prolog system to demonstrate

the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides alone are not

self-sufficient.

PROLOG

• Prolog = “pure Prolog” + additions

• Pure Prolog ~ logic

• Additions make Prolog‟s logical basis to work in practice

• Additions:

• “Pure” (do not affect logical meaning – just notational cosmetics)

• “Dirty” (do not have a logical meaning, eg. write(X))

• Some additions: list notation, operator notation, arithmetic, I/O

LIST NOTATION

• Examples of lists:

[a, b, c, d]

[]

[ann, tennis, tom, running]

[link(a,b), link(a,c), link(b,d)]

[a, [b,c], d, [], [a,a,a], f(X,Y)]

HEAD AND TAIL

• L = [a, b, c, d]

• a is head of L

• [b, c, d] is tail of L

• More notation, vertical bar:

• L = [Head | Tail]

• L = [a, b, c] = [a | [b, c]] = [a, b | [c]] = [a, b, c | []]

LIST NOTATION IS ONLY SYNTACTIC SUGAR

• List notation: [Head | Tail]

• Equivalent to standard Prolog notation: .(Head, Tail)

• Note: “.” is a functor

• Equivalent terms:

 [a, b, c] = .(a, .(b, .(c, [])))

The latter expression can be, as usual, shown as a tree (first dot is root

of tree)

LIST MEMBERSHIP

% member(X, L): X is member of L

member(X, [X | _]). % X appears as head of list

member(X, [_ | L]) :-

 member(X, L). % X in tail of list

TRY VARIOUS USES OF member/2

CONCATENATION OF LISTS

% conc(L1, L2, L3): L3 is concatenation of L1 and L2

conc([], L, L). % Base case

conc([X | L1], L2, [X | L3]) :- % Recursive case

 conc(L1, L2, L3).

TRY MANY USES OF conc/3

MANY USES OF CONC

?- conc([a,b,c], [1,2,3], L).

L = [a,b,c,1,2,3]

?- conc([a,[b,c],d], [a,[],b], L).

L = [a, [b,c], d, a, [], b]

?- conc(L1, L2, [a,b,c]).

....

GENERATING LISTS OF INCREASING LENGTH

Try this:

?- conc(L, _, _).

....

Which months precede may, which follow may?

?- Months = [jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec] ,

 conc(Before, [may | After], Months).

Delete everything that follows three

consecutive occurrences of „z‟

?- L1 = [a,b,z,z,c,z,z,z,d,e], % Given list

 conc(L2, [z,z,z | _], L1). % L2 is L1 up to 3 z‟s

LIST MEMBERSHIP WITH CONC

% member2(X, L): X is member of list L

member2(X, L) :-

 conc(_, [X | _], L).

LIST DELETION

% del(X, L, NewL)

del(X, [X | Tail], Tail).

del(X, [Y | Tail], [Y | Tail1]) :-

 del(X, Tail, Tail1).

?- del(X, [a, b, c, d], L1).

...

LIST INSERTION

% insert(X, L, NewL):

% insert X into L “non-deterministically” at any position,

% resulting in NewL

insert(X, L, [X | L]). % Insert X as head

insert(X, [Y | L], [Y | NewL]) :-

 insert(X, L, NewL). % Insert X into tail

INSERT AS OPPOSITE TO DELETE

?- del(apple, L, [1,2,3]). % What is L?

...

% insert(X, L, LongerL): Insert X in L at any position, giving LongerL

insert(X, List, LongerList) :-

 del(X, LongerList, List).

% member3(X, L): X is element of L, alternative implementation

member3(X, L) :-

 del(X, L, _). % X can be deleted from L

SUBLIST OF A LIST

% sublist(List, Sublist): Sublist appears as a sublist in List

% It‟s easy!

% Just draw List and Sublist and rewrite the drawing into Prolog

 L

 L1 S L3

 L2

sublist(S, L) :-

 conc(L1, L2, L),

 conc(S, L3, L2).

OPERATOR NOTATION

OPERATOR NOTATION

• Operator notation is just a cosmetic, surface notational improvement

• Equivalent notations for arithmetic expressions:

 +(*(2,a), *(b,c)) = 2*a + b*c

• +, * are infix operators built into Prolog

• Convention in Prolog: + has higher precedence than *

USER CAN INTRODUCE HER OWN

OPERATORS

has(peter, information).

supports(floor, table).

This can be rewritten with operators as:

:- op(600, xfx, has).

:- op(600, xfx, supports).

peter has information.

floor supports table.

TYPES OF OPERATORS

(1) infix operators

 xfx xfy yfx

(2) prefix operatos

 fx fy

(3) postfix operators

 xf yf

• yfx is left associative operator

• xfy is right associative operator

• What is the difference between fx in fy?

DECLARATION OF AN OPERATOR,

“DIRECTIVE”

• op(Prioriteta, Tip, Operator).

• Declare appropriate operators so the the following clauses will

become a legal notation in Prolog:

 mary has talent and big hopes and many high ambitions

 ?- X = ..., Y = ..., ...

 if X > Y then Z = X else Z = Y.

• Write an interpreter in Prolog for if-then-else statement.

ARITHMETIC

BUILT-IN PREDICATES

FOR ARITHMETIC OPERATIONS

• Try to add 1 + 2 with:

?- X = 1 + 2.

X = 1 + 2 % Prolog just keeps expression unevaluated

• This is better:

?- X is 1 + 2. % “is”: built-in predicate that forces calculation

X = 3

ARITHMETIC OPERATIONS

• +, -, *, /, ** addition, subtraction, ...

• //, mod operations on integers

• sin, cos, log, ... standard functions

?- X is 2 + sin(3.14/2).

X = 2.9999996829318345

?- A is 11/3.

Y = 3.6666666666666665

?- B is 11//3.

C = 3

?- C is 11 mod 3.

C = 2

COMPARISON PREDICATES

X > Y

X < Y

X >= Y

X =< Y

X =:= Y X and Y are numerically equal

X =\= Y X and Y are not numerically equal

?- 315 * 3 >= 250*4.

yes

?- 2+5 = 5+2.

no

?- 2+5 =:= 5+2.

yes

LENGTH OF LIST

% length(L, N): N is the length of list L

length([], 0).

length([_ | L], N) :-

 length(L, N0),

 N is N0 + 1.

In the second clause, can the order of goals be reversed?

