
PROLOG:

CONTROLLING BACKTRACKING,

CUT AND NEGATION

Ivan Bratko

University of Ljubljana

These slides are meant to be used with a Prolog system to demonstrate
the examples, and the book: I. Bratko, Prolog Programming for Artificial
Intelligence, 4th edn., Pearson Education 2011. The slides are not self-
sufficient.

EXAMPLE: STATE OF POLLUTION ALERT

 normal alert1 alert2

 0 3 6

 Concentration X of pollutant

HOW ALERT DEPENDS ON POLLUTION?

• Rule 1: if X < 3 then Y = normal

• Rule 2: if 3 ≤ X and X < 6 then Y = alert1

• Rule 3: if 6 ≤ X then Y = alert2

f(Concentration, State_of_alert)

f(X, normal) :- X < 3. % Rule 1

f(X, alert1) :- 3 =< X, X < 6. % Rule 2

f(X, alert2) :- 6 =< X. % Rule 3

EXPERIMENT 1

?- f(2, Y), Y = alert1.

no

• Study execution trace; at some points backtracking occurs when it

obviously makes no sense?

VERSION 2

f(X, normal) :- X < 3, !.

f(X, alert1) :- 3 =< X, X < 6, !.

f(X, alert2) :- 6 =< X.

• “!” is read as “cut” because it cuts alternatives

• Cut prevents pointless backtracking

• Version 2 is more efficient than version 1,

• Here, the cuts do not affect the logical meaning

EXPERIMENT 2

?- f(7, Y).

Y = alert2

• Study execution trace, Prolog again does some unnecessary work

VERSION 3

f(X, normal) :- X < 3, !.

f(X, alert1) :- X < 6, !.

f(X, alert2).

• This is the most efficient version

• But unfortunatly, the logical meaning has changed. Try this:

?- f(2, alert1).

 yes % Not as intended!

• Study why Prolog now answered “yes”

• A more careful formulation of the question is:

?- f(2, Y), Y = alert1.

 no

THE SCOPE OF CUT

C :- P, Q, R, !, S, T, U.

C :- V.

A :- B, C, D.

?- A.

 A

 B C D

 P, Q, R, !, S, T, U V

The cut is not “visible” from A (cut is nested too deep from point of view of A)

MAXIMUM

max(X, Y, X) :- X >= Y.

max(X, Y, Y) :- X < Y.

% More efficient with cut

max(X, Y, X) :- X >= Y, !.

max(X, Y, Y).

% But note again!!!

?- max(3, 1, 1).

yes % Not as intended!

MORE CAREFUL FORMULATION OF MAX

max(X, Y, Max) :-

 X >= Y, !, Max = X

 ;

 Max = Y.

?- max(3, 1, 1).

no % As intended

CUT AFFECTS DECLARATIVE MEANING

p :- a, b.

p :- c.

• This means: p <===> (a & b) v c

p :- a, !, b.

p :- c.

• Means: p <===> (a & b) v (~a & c)

• If we change the order of clauses:

p :- c.

p :- a, !, b.

• The meaning also changes:

p <===> c v (a & b)

“Mary likes all animals but snakes”

How can we express this in Prolog?

If X is a snake then “Mary likes X” is not true,

otherwise if X is an animal then Mary likes X.

likes(mary, X) :-

 snake(X), !, fail. % “fail” is built-in predicate that always fails

likes(mary, X) :-

 animal(X).

NEGATION

• In Prolog, negation is defined as:

not(P) :-

 P, !, fail

 ;

 true.

• This is called negation as failure

• not can be written as a prefix operator: not P

MARY & ANIMALS:

FORMULATION WITH NEGATION

likes(mary, X) :-

 animal(X),

 not snake(X).

• This is more readable than the formulation with cut + fail

NEGATION AS FAILURE

• Not exactly the same as negation in logic (mathematics)

• Negation as failure makes the “closed world assumption”

• That is: Everything that Prolog cannot derive from the program is

assumed to be false

• Standard abbreviation: CWA = Closed World Assumption

• Alternative, more standard but less pretty, notation for not P is:

 \+ P

CLOSED WORLD ASSUMPTION

• What yes/no means under CWA? Consider this single line programe:

 round(ball).

• How should Prolog’s answers be understood in the following?

?- round(ball).

 yes % Yes, round(ball) logically follows from program

?- round(earth).

 no % “no” means: I don’t know, can’t be derived from program

?- not round(earth).

 yes % It follows from the program, but only under CWA

PROBLEMS WITH NEGATION

• Negation as failure is defined through cut, so we can expect some

difficulties. Consider this example about restaurants:

good_standard(jeanluis).

expensive(jeanluis).

good_standard(francesco).

reasonable(Restaurant) :- % A restaurant is reasonably priced if

 not expensive(Restaurant). % it is not expensive

ASKING ABOUT RESTAURANTS

% Ask for good and reasonable restaurant:

?- good_standard(X), reasonable(X).

 X = francesco % As expected

% Ask for reasonable and good reastaurant:

?- reasonable(X), good_standard(X).

 no % Surprize! What happened?

• Under negation, Prolog’s usual quantification of variables changes

• Safe use of negation as failure: variables in negated goals are

instantiated at the time of the execution of such goals

