
PLANNING

Ivan Bratko

University of Ljubljana

These slides are meant to be used with a Prolog system to demonstrate

the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.

MEANS-ENDS PLANNING

 Problem of planning

 Given:

(1) possible actions in the world

(2) start state of the world

(3) goals to be achieved

 Find:

A plan to achieve the goals

 Plan = sequence of actions, i.e. totally ordered set of actions

 Plan may also be partially ordered set of actions

 For a start, we consider total order planning

PLANNING BY MEANS-ENDS ANALYSIS

 Plans can be constructed by the familiar state-space search

 Alternatively, plans can be constructed through “means-

ends analysis”

 In narrow sense, “planning” refers to means-ends planning

 Means-ends stands for:

 ends ~ goals (goals of plan)

 means ~ actions (actions the agent can perform)

 The planner reasons about what actions can possibly

achieve what goals

Example: mobile robots

Robot 1 Robot 2 Robot 3

Robots can move along green corridors

Task: Robot 1 wants to move into pink

Solving with state-space

Robot 1 Robot 2 Robot 3

Task: Robot 1 wants to move into pink

Construct state-space graph:

states + successor relation between states

Solving by means-ends planner

Robot 1 Robot 2 Robot 3

Task: Robot 1 wants to move into pink

Formulate goal

Formulate actions in terms of preconditions and effects

Solving by means-ends planner

Robot 1 Robot 2 Robot 3

Means-ends reasoning may proceed like this:

First idea: Robot1 moves horizontally to “pink”

Next: Is this action possible?

 No, action requires free path for Robot1 to pink

Next: How can I enable Robot1 move by making path free?

 Now planner‟s next subgoal is “Make horizontal path free”

Idea: Robot2 moves away from bottom horizontal path

 Then Robot1 can move to pink, which completes the plan

 We consider the “classical planning” setting which

assumes:

 The world is completely observable

 Actions‟ effects are deterministic (completely predicateble, no

uncertainty)

 Any changes in the world only occur as results of agent‟s actions,

 but not “on their own”

 Implicit time: actions have no durations; time is only reflected in the

order of actions

CLASSICAL PLANNING

Representation

 How to represent a classical planning problem?

 Traditional, “STRIPS-like” representation, introduced by the

STRIPS planner (Stanford Research Institute Problem

Solver, 1970‟s)

A BLOCKS WORLD PROBLEM

 c

 a b

 1 2 3 4

 Three blocks a, b, c; four locations 1, 2, 3, 4

 Relationships in initial state:

 on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c)

 Goal of plan e.g. build stack a, b, c

 Goals stated as: on(a,b), on(b,c)

Representing planning problems

 A goal:

 on(a,c)

 An action:

 move(a, b, c)

 Action‟s preconditions:

 clear(a), on(a,b), clear(c)

 Action‟s effects:

 on(a,c), clear(b), not on(a,b), not clear(c)

add

delete

Action schema

 Represents a number of actions by using variables

 move(X, Y, Z)

 X stands for any block

 Y, Z stand for any block or location

BLOCKS WORLD:

STRIPS REPRESENTATION

 X

 Y Z

Action: move(X, Y, Z)

Preconditions: on(X, Y), clear(X), clear(Y)

Add list: on(X, Z), clear(Y)

Delete list: on(X, Y), clear(Z)

BLOCKS WORLD: STRIPS-LIKE

REPRESENTATION IN PROLOG

% can(Action, Condition): Action possible if Condition true

can(move(Block, From, To), [clear(Block), clear(To), on(Block, From)])

:-

 block(Block), % Block to be moved

 object(To), % "To" is a block or a place

 To \== Block, % Block cannot be moved to itself

 object(From), % "From" is a block or a place

 From \== To, % Move to new position

 Block \== From. % Block not moved from itself

ADDS, DELETES

% adds(Action, Relationships): Action establishes Relationships

adds(move(X,From,To), [on(X,To), clear(From)]).

% deletes(Action, Relationships): Action destroys Relationships

deletes(move(X,From,To), [on(X,From), clear(To)]).

BLOCKS AND PLACES

object(X) :- % X is an objects if

 place(X) % X is a place

 ; % or

 block(X). % X is a block

% A blocks world

block(a). block(b). block(c).

place(1). place(2). place(3). place(4).

A STATE IN BLOCKS WORLD

% A state in the blocks world

%

% c

% a b

% ====

% place 1234

state1([clear(2), clear(4), clear(b), clear(c), on(a,1), on(b,3), on(c,a)]).

BLOCKS WORLD

MEANS-ENDS REASONING

 c

 a b

 1 2 3 4

True in this state:

on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c)

Let goal of plan be on(a,b); find a plan:

 Which action establishes on(a,b)? move(a,X,b)

 What is the precondition COND for this move?

 Set COND as intermediate goal, find plan to achieve COND

 ...

MEANS-ENDS PLANNING:

A FIRST IDEA

This can be easily translated into Prolog, next slide

A SIMPLE MEANS-ENDS PLANNER

IN PROLOG

% plan(State, Goals, Plan, FinalState)

plan(State, Goals, [], State) :-

 satisfied(State, Goals).

plan(State, Goals, Plan, FinalState) :-

 conc(PrePlan, [Action | PostPlan], Plan), % Divide plan

 select(State, Goals, Goal), % Select a goal

 achieves(Action, Goal), % Relevant action

 can(Action, Condition),

 plan(State, Condition, PrePlan, MidState1), % Enable Action

 apply(MidState1, Action, MidState2), % Apply Action

 plan(MidState2, Goals, PostPlan, FinalState). % Remaining goals

PROCEDURAL ASPECTS

% The way plan is decomposed into stages by conc, the

% precondition plan (PrePlan) is found in breadth-first

% fashion. However, the length of the rest of plan is not

% restricted and goals are achieved in depth-first style.

plan(State, Goals, Plan, FinalState) :-

 conc(PrePlan, [Action | PostPlan], Plan), % Divide plan

 ...

 plan(State, Condition, PrePlan, MidState1), % Breadth-first

 apply(MidState1, Action, MidState2), % Apply Action

 plan(MidState2, Goals, PostPlan, FinalState). % Depth-first

PROCEDURAL ASPECTS: GENERATED

PLANS CAN BE VERY AWKWARD

?- start1(S), plan(S, [on(a,b), on(b,c)], P).

P = [move(b,3,c),

 move(b,c,3),

 move(c,a,2),

 move(a,1,b),

 move(a,b,1),

 move(b,3,c) ,

 move(a,1,b)]

This is far from shortest plan!

Try to explain how the planner found this

 c

 a b

 ====

 1234

PROCEDURAL ASPECTS

 conc(PrePlan, [Action | PostPlan], Plan)

 enforces a strange combination of search strategies:

 1. Iterative deepening w.r.t. PrePlan

 2. Depth-first w.r.t. PostPlan

 We can force global iterative deepening by adding at front:

 conc(Plan, _, _)

A SIMPLE MEANS-ENDS PLANNER

WITH ITERATIVE DEEPENING

% plan(State, Goals, Plan, FinalState)

plan(State, Goals, [], State) :-

 satisfied(State, Goals).

plan(State, Goals, Plan, FinalState) :-

 conc(Plan, _, _), % Shortest plans first

 conc(PrePlan, [Action | PostPlan], Plan), % Divide plan

 select(State, Goals, Goal), % Select a goal

 achieves(Action, Goal), % Relevant action

 can(Action, Condition),

 plan(State, Condition, PrePlan, MidState1), % Breadth-first

 apply(MidState1, Action, MidState2), % Apply Action

 plan(MidState2, Goals, PostPlan, FinalState). % Breadth-first

?- start(S), plan(S, [on(a,b), on(b,c)], P).

P =

 [move(c, a, 2),

 move(b, 3, a),

 move(b, a, c),

 move(a, 1, b)]

 This is a surprise!

 This is still suboptimal, and quite mysterious!

 How can this be explained? How the second move got

into the plan

PROBLEM WITH COMPLETENESS

 Even with global iterative deepening, our planner still has

problems.

 E.g. it finds a four step plan for our example blocks task

 Why??? Incompleteness!

 Problem: locality; sometimes referred to as „linearity‟

Planner keeps working myopicly on just one goal, and only

when this is achieved, it starts working on a second goal. So it

may fail to consider at all some useful actions

GOAL REGRESSION

 Goal regression overcomes incompleteness; it achieves

global planning

 Main mechanism: “Regressing Goals through Action”

 RegressedGoals Goals

 Action

 Given Goals and Actions, find RegressedGoals

 That is: what has to be true before Action so that Goals are

true after Action?

GOAL REGRESSION

 can(A)

 del(A) Goals

 add(A)

RegressedGoals = Goals + can(A) - add(A)

Goals and del(A) must be disjoint

GOAL REGRESSION ENABLES

GLOBAL PLANNING

 It makes the planner consider all relevant actions at any

point of planning

EXAMPLE: ROBOTS MOVING IN

RECTANGULAR GRID

 4 5 6

 a b c
 1 2 3

Robots a, b, c, cells 1, ..., 6

Goal: at(a,3)

Plan: m(b,2,5), m(a,1,2), m(c,3,6), m(a,2,3)

DOMAIN DEFINITION

% m(R,A,B): robot R moves from cell A to cell B

can(m(R,A,B), [at(R,A), c(B)]) :-

 robot(R), adjacent(A,B).

adds(m(R,A,B), [at(R,B), c(A)]).

deletes(m(R,A,B), [at(R,A), c(B)]).

adjacent(1, 2). adjacent(2, 1). adjacent(1, 4).

...

FINDING PLAN FOR at(a,3)

Start state: at(a,1),at(b,2),at(c,3),c(4),c(5),c(6)

at(b,2),c(5),at(a,1),c(6),at(c,3)

 m(b,2,5)

 at(a,1),c(2),c(6),at(c,3)

 m(a,1,2)

 at(a,2),at(c,3),c(6)

 m(c,3,6)

 at(a,2),c(3)

 m(a,2,3)

 at(a,3)

 m(a,6,3)

 at(a,6),c(3)

EXERCISE

 Demonstrate that plan of length 3 for achieving

on(a,b) and on(b,c) in blocks world from our usual

start state can be generated by the goal regression

mechanism

A means-ends planner with

goal regression in Prolog

% plan(State, Goals, Plan)

plan(State, Goals, []) :-

 satisfied(State, Goals). % Goals true in State

PLANNER WITH GOAL REGR. CTD.

% plan(State, Goals, Plan)

plan(State, Goals, []) :-

 satisfied(State, Goals). % Goals true in State

plan(State, Goals, Plan) :-

 conc(PrePlan, [Action], Plan), % Enforce breadth-first effect

 select(State, Goals, Goal), % Select a goal

 achieves(Action, Goal),

 can(Action, Condition), % Ensure Action contains no variables

 preserves(Action, Goals), % Protect Goals

 regress(Goals, Action, RegressedGoals), % Regress Goals

 plan(State, RegressedGoals, PrePlan).

PLANNER WITH GOAL REGR. CTD.

preserves(Action, Goals) :- % Action does not destroy Goals

 deletes(Action, Relations),

 \+ (member(Goal, Relations),

 member(Goal, Goals)).

PLANNER WITH GOAL REGR. CTD.

regress(Goals, Action, RegressedGoals) :-

 % Regress Goals through Action

 adds(Action, NewRelations),

 delete_all(Goals, NewRelations, RestGoals),

 can(Action, Condition),

 addnew(Condition, RestGoals, RegressedGoals).

 % Add precondition, check if RegressedGoals impossible

 % For example: on(a,b) and clear(b) is impossible

DOMAIN KNOWLEDGE

 At which places in this program domain-specific knowledge

can be used?

 select(State, Goals, Goal)

 Which goal next (Last)?

 achieves(Action Goal)

 Which action among those that achieve Goal

 impossible(Goal, Goals)

 Avoid impossible tasks

 Heuristic function h in state-space goal-regression planner?

STATE SPACE FOR PLANNING

WITH GOAL REGRESSION

Goals
RegGoals2

RegGoals1

StartState

A2

A1

Begin with Goals, search towards StartState

SEARCHING SPACE OF

SETS OF GOALS

 What are states in this “state space”? Sets of goals

 What is the goal condition? Goals in StartState

 Can we search with A*

 What could be a heuristic function?

 Maybe: h = | Goals – StartState |

 For the blocks world, does this h satisfy the

admissibility condition from the admissibility theorem?

State space representation of means-ends

planning with goal regression in Prolog

:- op(300, xfy, ->).

s(Goals -> NextAction, NewGoals -> Action, 1) :-

 % All costs are 1

 member(Goal, Goals),

 achieves(Action, Goal), % Action relevant to Goals

 can(Action, Condition),

 preserves(Action, Goals),

 regress(Goals, Action, NewGoals).

Goal state and heuristic

goal(Goals -> Action) :-

 start(State), % User-defined initial situation

 satisfied(State, Goals). % Goals true in initial situation

h(Goals -> Action, H) :- % Heuristic estimate

 start(State),

 delete_all(Goals, State, Unsatisfied), % Unsatisfied goals

 length(Unsatisfied, H). % Number of unsatisfied goals

QUESTION

 Does this heuristic function for the blocks world satisfy the

condition of admissibility theorem for best-first search?

UNINSTANTIATED ACTIONS

 Our planner forces complete instantiation of actions:

 can(move(Block, From, To), [clear(Block), ...]) :-

 block(Block),

 object(To),

 ...

MAY LEAD TO INEFFICIENCY

For example, to achieve clear(a):

 move(Something, a, Somewhere)

Precondition for this is established by:

 can(move(Something, ...), Condition)

This backtracks through 10 instantiations:

 move(b, a, 1)

 move(b, a, 3)

 move(c, a, 1)

MORE EFFICIENT: UNINSTANTATED

VARIABLES IN GOALS AND ACTIONS

can(move(Block, From, To),

 [clear(Block), clear(To), on(Block, From)]).

Now variables remain uninstantiated:

 [clear(Something), clear(Somewhere), on(Something,a)]

This is satisfied immediately in initial situation by instantiation:

 Something = c, Somewhere = 2

 Uninstantiated moves and goals stand for sets of moves and

goals

 However, complications arise

 To prevent e.g. move(c,a,c) we need:

 can(move(Block, From, To),

 [clear(Block), clear(To), on(Block, From),

 different(Block,To), different(From,To),

 different(Block,From)]).

TREATING different(X,Y)

 Some conditions do not depend on state of world

 They cannot be achieved by actions

 Add new clause for satisfied/2:

 satisfied(State, [Goal | Goals]) :-

 holds(Goal),

 satisfied(Goals).

Handling new type of conditions

holds(different(X, Y))

 (1) If X, Y do not match then true.

(2) If X==Y then fail.

(3) Otherwise postpone decision until later (maintain list of

postponed conditions; one way of implementing this is with

CLP - Constraint Logic Programming)

Complications with uninstantiated actions

 Consider

 move(a, 1, X)

 Does this delete clear(b)?

 Two alternatives:

 (1) Yes if X=b

 (2) No if different(X, b)

PARTIAL ORDER PLANNING

b

a c f d

e b

a

c f

d

e

• The left group of three blocks can be solved

independently of the right group

• This gives rise to partially ordered plan

PARTIAL ORDER PLAN

 move(b, a, c) move(a, table, b)

 move(c, d, f) move(d, table, c)

 The only ordering constraints are:

 move(b,a,c) is before move(a,table,b), and

 move(c,d,f) is before move(d,table,c)

 The execution of the top two actions can be interleaved in

any order with bottom two actions; they can even be

executed in parallel (e.g. by two robots)

PARTIAL ORDER PLANNING and

NONLINEAR PLANNING

 Partial order planning is sometimes (problematically) called

“nonlinear planning”

 May lead to ambiguity: nonlinear w.r.t. actions or goals

 Standard abbreviation: POP

POP ALGORITHM OUTLINE

 Search space of possible partial order plans (POP)

 Start plan is { Start, Finish}

 Start and Finish are virtual actions:

 effect of Start is start state of the world

 precondition of Finish is goals of plan

 Plan looks like this:

Start : StartState Goals : Finish

PARTIAL ORDER PLAN

 Each POP consists of:

 set of actions {Ai, Aj, ...}

 set of ordering constraints e.g. Ai < Aj (Ai before Aj)

 set of causal links

 Causal links are of form

 causes(Ai, P, Aj)

 read as: Ai achieves P for Aj

 Example causal link:

 causes(move(c, a, 2), clear(a), move(a, 1, b))

CAUSAL LINKS AND CONFLICTS

 Causal link causes(A, P, B) “protects” P in interval between

A and B

 Action C conflicts with causes(A, P, B) if C‟s effect is ~P,

that is deletes(C, P)

 Such conflicts are resolved by additional ordering

constraints:

 C < A or B < C

 This ensures that C is outside interval A..B

PLAN CONSISTENT

 A plan is consistent if there is no cycle in the ordering

constraints and no conflict

 E.g. a plan that contains A<B and B<A contains a cycle

(therefore not consistent, obviously impossible to execute!)

 Property of consistent plans:

 Every linearisation of a consistent plan is a total-order

solution whose execution from the start state will achieve the

goals of the plan

SUCCESSOR RELATION

BETWEEN POPs

A successor of a POP Plan is obtained as follows:

 Select an open precondition P of an action B in Plan (i.e. a

precondition of B not achieved by any action in Plan)

 Find an action A that achieves P

 A may be an existing action in Plan, or a new action; if new

then add A to Plan and constrain: Start < A, A < Finish

 Add to Plan causal link causes(A,P,B) and constraint A < B

 Add appropriate ordering constraints to resolve all conflicts

between:

 new causal link and all existing actions, and

 A (if new) and existing causal links

SEARCHING A SPACE OF POPs

 POP with no open precondition is a solution to our planning

problem

 Some interesting questions:

 Heuristics for this search?

 Means-ends planning for game playing?

 Heuristic estimates can be extracted from planning graphs;

 GRAPHPLAN is an algorithm for constructing planning

graphs

