
PLANNING 
 

Ivan Bratko 

University of Ljubljana 

 

These slides are meant to be used with a Prolog system to demonstrate 

the examples, and the book: I. Bratko, Prolog Programming for Artificial 

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.  



MEANS-ENDS PLANNING 

 Problem of planning 

 Given:  

(1) possible actions in the world 

(2) start state of the world 

(3) goals to be achieved 

 Find: 

A plan to achieve the goals 

 

 Plan = sequence of actions, i.e. totally ordered set of actions 

 Plan may also be partially ordered set of actions 

 For a start, we consider total order planning 



PLANNING BY MEANS-ENDS ANALYSIS 

 Plans can be constructed by the familiar state-space search 

 

 Alternatively, plans can be constructed through “means-

ends analysis” 

 

 In narrow sense, “planning” refers to means-ends planning 

 

 Means-ends stands for: 

 ends ~ goals   (goals of plan) 

 means ~ actions  (actions the agent can perform) 

 

 The planner reasons about what actions can possibly 

achieve what goals 



Example: mobile robots 

Robot 1 Robot 2 Robot 3 

Robots can move along green corridors 

 

Task: Robot 1 wants to move into pink 

 



Solving with state-space 

Robot 1 Robot 2 Robot 3 

Task: Robot 1 wants to move into pink 

 

Construct state-space graph:  

states + successor relation between states 



Solving by means-ends planner 

Robot 1 Robot 2 Robot 3 

Task: Robot 1 wants to move into pink 

 

Formulate goal 

Formulate actions in terms of preconditions and effects 



Solving by means-ends planner 

Robot 1 Robot 2 Robot 3 

Means-ends reasoning may proceed like this: 

 

First idea: Robot1 moves horizontally to “pink” 

Next: Is this action possible? 

 No, action requires free path for Robot1 to pink 

Next: How can I enable Robot1 move by making path free?  

 Now planner‟s next subgoal is “Make horizontal path free” 

Idea: Robot2 moves away from bottom horizontal path  

      Then Robot1 can move to pink, which completes the plan 



 We consider  the “classical planning” setting which 

assumes: 

 

 The world is completely observable 

 Actions‟ effects are deterministic (completely predicateble, no 

uncertainty) 

 Any changes in the world only occur as results of agent‟s actions, 

    but not “on their own” 

 Implicit time: actions have no durations; time is only reflected in the 

order of actions 

CLASSICAL PLANNING 



Representation 

 How to represent a classical planning problem? 

 

 Traditional, “STRIPS-like” representation, introduced by the 

STRIPS planner (Stanford Research Institute Problem 

Solver, 1970‟s) 



A BLOCKS WORLD PROBLEM 

                       c 

                       a               b 

 

                       1      2      3       4 

                         

 Three blocks a, b, c; four locations 1, 2, 3, 4 

 

 Relationships in initial state:  

 on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c) 

 

 Goal of plan e.g. build stack a, b, c 

 Goals stated as: on(a,b), on(b,c) 

 

 

 

 



Representing planning problems 

 A goal:   

        on(a,c) 

 

 An action: 

        move( a, b, c) 

 

 Action‟s preconditions: 

        clear(a), on(a,b), clear(c) 

 

 Action‟s effects: 

        on(a,c), clear(b),  not on(a,b), not clear(c) 

add 

delete 



Action schema 

 Represents a number of actions by using variables 

 

 move( X, Y, Z) 

 

            X stands for any block 

   Y, Z stand for any block or location 



BLOCKS WORLD:  

STRIPS REPRESENTATION 

                     X 

 

                     Y                     Z 

 

Action: move( X, Y, Z)      

 

Preconditions: on( X, Y), clear( X), clear( Y) 

 

Add list:  on( X, Z), clear( Y) 

 

Delete list: on( X, Y), clear( Z)               



BLOCKS WORLD: STRIPS-LIKE 

REPRESENTATION IN PROLOG 

% can( Action, Condition): Action possible if Condition true 

  

can( move( Block, From, To), [ clear( Block), clear( To), on( Block, From)] ) 

:- 

  block( Block),         % Block to be moved 

  object( To),             % "To" is a block or a place 

  To \== Block,          % Block cannot be moved to itself 

  object( From),         % "From" is a block or a place 

  From \== To,           % Move to new position 

  Block \== From.        % Block not moved from itself 

  

 



ADDS, DELETES 

% adds( Action, Relationships): Action establishes Relationships 

  

adds( move(X,From,To), [ on(X,To), clear(From)]). 

 

  

% deletes( Action, Relationships): Action destroys Relationships 

  

deletes( move(X,From,To), [ on(X,From), clear(To)]). 

 



BLOCKS AND PLACES 

object( X)  :-           % X is an objects if 

  place( X)              % X is a place 

  ;                            % or 

  block( X).             % X is a block 

  

  

% A blocks world 

  

block( a).   block( b).   block( c). 

  

place( 1).    place( 2).    place( 3).    place( 4). 

 



A STATE IN BLOCKS WORLD 

%  A state in the blocks world 

% 

%             c 

%             a b 

%             ==== 

%  place  1234 

  

state1( [ clear(2), clear(4), clear(b), clear(c), on(a,1), on(b,3), on(c,a) ] ). 

 

 



BLOCKS WORLD  

MEANS-ENDS REASONING 

                       c 

                       a               b 

 

                       1      2      3       4 

                         

True in this state:  

on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c) 

 

Let goal of plan be on(a,b); find a plan: 

 Which action establishes on(a,b)?   move(a,X,b) 

      What is the precondition COND for this move? 

           Set COND as intermediate goal, find plan to achieve COND 

        ... 

  

 

 

 



MEANS-ENDS PLANNING: 

A FIRST IDEA 

This can be easily translated into Prolog, next slide 



A SIMPLE MEANS-ENDS PLANNER  

IN PROLOG 

%   plan( State, Goals, Plan, FinalState) 

  

plan( State, Goals, [], State)  :- 

  satisfied( State, Goals). 

   

plan( State, Goals, Plan, FinalState)  :- 

  conc( PrePlan, [Action | PostPlan], Plan),        % Divide plan 

  select( State, Goals, Goal),                                % Select a goal 

  achieves( Action, Goal),                                     % Relevant action 

  can( Action, Condition), 

  plan( State, Condition, PrePlan, MidState1),       % Enable Action 

  apply( MidState1, Action, MidState2),                  % Apply Action 

  plan( MidState2, Goals, PostPlan, FinalState).    % Remaining goals 

 



PROCEDURAL ASPECTS 

  

%  The way plan is decomposed into stages by conc, the  

%  precondition plan (PrePlan) is found in breadth-first 

%  fashion. However, the length of the rest of plan is not  

%  restricted and goals are achieved in depth-first style. 

  

plan( State, Goals, Plan, FinalState)  :- 

  conc( PrePlan, [Action | PostPlan], Plan),                 % Divide plan 

  ... 

  plan( State, Condition, PrePlan, MidState1),             % Breadth-first 

  apply( MidState1, Action, MidState2),                        % Apply Action 

  plan( MidState2, Goals, PostPlan, FinalState).          % Depth-first 

 
 



PROCEDURAL ASPECTS: GENERATED 

PLANS CAN BE VERY AWKWARD 

?- start1( S), plan( S, [on(a,b), on(b,c)], P). 

 

P = [ move(b,3,c), 

        move(b,c,3), 

        move(c,a,2), 

        move(a,1,b), 

        move(a,b,1), 

        move(b,3,c) , 

        move(a,1,b)] 

 

This is far from shortest plan! 

Try to explain how the planner found this 

 

 

 

  c  

  a b 

  ==== 

  1234 



PROCEDURAL ASPECTS 

 conc( PrePlan, [Action | PostPlan], Plan)  

       enforces a strange combination of search strategies: 

 

    1.  Iterative deepening w.r.t. PrePlan 

    2.  Depth-first w.r.t. PostPlan 

 

 We can force global iterative deepening by adding at front: 

    conc( Plan, _, _) 

 

 

 



A SIMPLE MEANS-ENDS PLANNER 

WITH ITERATIVE DEEPENING 

%   plan( State, Goals, Plan, FinalState) 

  

plan( State, Goals, [], State)  :- 

  satisfied( State, Goals). 

   

plan( State, Goals, Plan, FinalState)  :- 

  conc( Plan, _, _),               % Shortest plans first 

  conc( PrePlan, [Action | PostPlan], Plan),         % Divide plan 

  select( State, Goals, Goal),                                % Select a goal 

  achieves( Action, Goal),                                     % Relevant action 

  can( Action, Condition), 

  plan( State, Condition, PrePlan, MidState1),       % Breadth-first 

  apply( MidState1, Action, MidState2),                  % Apply Action 

  plan( MidState2, Goals, PostPlan, FinalState).    % Breadth-first 

 



?- start( S), plan( S, [on(a,b), on(b,c)], P). 

 

P  =   

    [ move( c, a, 2), 

       move( b, 3, a), 

       move( b, a, c), 

       move( a, 1, b) ] 

 

 This is a surprise!  

 This is still suboptimal, and quite mysterious! 

 How can this be explained? How the second move got 

into the plan 



PROBLEM WITH COMPLETENESS 

 Even with global iterative deepening, our planner still has 

problems.  

 

 E.g. it finds a four step plan for our example blocks task 

 

 Why???  Incompleteness! 

 

 Problem: locality; sometimes referred to as „linearity‟ 

Planner keeps working myopicly on just one goal, and only 

when this is achieved, it starts working on a second goal. So it 

may fail to consider at all some useful actions 

 

 



GOAL REGRESSION 

 Goal regression overcomes incompleteness; it achieves 

global planning 

 

 Main mechanism: “Regressing Goals through Action” 

 

         RegressedGoals                        Goals 

                                          Action 

 

 Given Goals and Actions, find RegressedGoals 

 That is: what has to be true before Action so that Goals are 

true after Action? 

 

 



GOAL REGRESSION 

 

                                            can(A) 

 

 

      del(A)                                               Goals 

 

 

                                             add(A) 

 

RegressedGoals = Goals + can(A) - add(A)  

Goals and del(A) must be disjoint 



GOAL REGRESSION ENABLES  

GLOBAL PLANNING 

 

 It makes the planner consider all relevant actions at any 

point of planning 

 

 



EXAMPLE: ROBOTS MOVING IN 

RECTANGULAR GRID 

 
 

                          4        5       6 
 
                     a      b     c 
                           1       2      3       
 
 
 
Robots a, b, c, cells 1, ..., 6 
 
Goal: at(a,3) 
 
Plan:  m(b,2,5),  m(a,1,2),  m(c,3,6),  m(a,2,3) 
 



DOMAIN DEFINITION 

% m(R,A,B): robot R moves from cell A to cell B 

 

can( m(R,A,B), [ at(R,A), c(B)])  :- 

  robot(R), adjacent(A,B). 

 

adds( m(R,A,B), [ at(R,B), c(A)]). 

 

deletes( m(R,A,B), [ at(R,A), c(B)]). 

 

adjacent( 1, 2). adjacent( 2, 1). adjacent( 1, 4). 

... 



FINDING PLAN FOR  at(a,3) 

Start state: at(a,1),at(b,2),at(c,3),c(4),c(5),c(6) 

 

at(b,2),c(5),at(a,1),c(6),at(c,3) 

   m(b,2,5) 

           at(a,1),c(2),c(6),at(c,3) 

             m(a,1,2) 

                                                    at(a,2),at(c,3),c(6) 

          m(c,3,6) 

                                                                          at(a,2),c(3) 

          m(a,2,3) 

                                                                                                        at(a,3) 

             m(a,6,3) 

                                                      at(a,6),c(3) 



EXERCISE 

 Demonstrate that plan of length 3 for achieving 

on(a,b) and on(b,c) in blocks world from our usual 

start state can be generated by the goal regression 

mechanism 



A means-ends planner with  

goal regression in Prolog 

 
  

%   plan( State, Goals, Plan) 

  

plan( State, Goals, [ ])  :- 

  satisfied( State, Goals).                  % Goals true in State 

  

  



PLANNER WITH GOAL REGR. CTD. 

%   plan( State, Goals, Plan) 

  

plan( State, Goals, [ ])  :- 

  satisfied( State, Goals).                  % Goals true in State 

 

plan( State, Goals, Plan)  :- 

  conc( PrePlan, [Action], Plan),        % Enforce breadth-first effect 

  select( State, Goals, Goal),             % Select a goal 

  achieves( Action, Goal), 

  can( Action, Condition),           % Ensure Action contains no variables 

  preserves( Action, Goals),                             % Protect Goals 

  regress( Goals, Action, RegressedGoals),    % Regress Goals  

  plan( State, RegressedGoals, PrePlan). 

 



PLANNER WITH GOAL REGR. CTD. 

preserves( Action, Goals)  :-          % Action does not destroy Goals 

  deletes( Action, Relations), 

  \+ ( member( Goal, Relations), 

        member( Goal, Goals) ). 

 



PLANNER WITH GOAL REGR. CTD. 

regress( Goals, Action, RegressedGoals)  :-        

         % Regress Goals through Action 

    adds( Action, NewRelations), 

    delete_all( Goals, NewRelations, RestGoals), 

    can( Action, Condition), 

    addnew( Condition, RestGoals, RegressedGoals).   

                 % Add precondition, check if RegressedGoals impossible 

      % For example: on(a,b) and clear(b) is impossible 

 



DOMAIN KNOWLEDGE 

 At which places in this program domain-specific knowledge 

can be used? 

 

 select( State, Goals, Goal) 

       Which goal next (Last)? 

 

 achieves( Action Goal) 

        Which action among those that achieve Goal 

 

 impossible( Goal, Goals) 

       Avoid impossible tasks 

 

 Heuristic function h in state-space goal-regression planner? 

 

 



STATE SPACE FOR PLANNING 

WITH GOAL REGRESSION 

Goals 
RegGoals2 

RegGoals1 

StartState 

A2 

A1 

Begin with Goals, search towards StartState 



SEARCHING SPACE OF  

SETS OF GOALS 

 What are states in this “state space”? Sets of goals 

 

 What is the goal condition?  Goals in StartState 

 

 Can we search with A* 

 

 What could be a heuristic function? 

 

 Maybe:  h = | Goals – StartState | 

 

 For the blocks world, does this h satisfy the 

admissibility condition from the admissibility theorem? 

 

 



State space representation of means-ends  

planning with goal regression in Prolog 
  

 

:- op( 300, xfy, ->). 

  

s( Goals -> NextAction, NewGoals -> Action, 1)  :-      

                                                          % All costs are 1 

  member( Goal, Goals), 

  achieves( Action, Goal),                 % Action relevant to Goals 

  can( Action, Condition), 

  preserves( Action, Goals), 

  regress( Goals, Action, NewGoals). 

  
  

 



Goal state and heuristic 

goal( Goals -> Action) :- 

  start( State),                             % User-defined initial situation 

  satisfied( State, Goals).           % Goals true in initial situation 

 

 

h( Goals -> Action, H)  :-                          % Heuristic estimate 

  start( State), 

  delete_all( Goals, State, Unsatisfied),    % Unsatisfied goals 

  length( Unsatisfied, H).                           % Number of unsatisfied goals 

 

 



QUESTION 

 Does this heuristic function for the blocks world satisfy the 

condition of admissibility theorem for best-first search? 



UNINSTANTIATED ACTIONS 

 Our planner forces complete instantiation of actions: 

 

     can( move( Block, From, To), [ clear( Block), ...])  :- 

         block( Block), 

         object( To), 

         ... 

 

 



MAY LEAD TO INEFFICIENCY 

For example, to achieve clear(a): 

 

    move( Something, a, Somewhere) 

 

Precondition for this is established by: 

 

     can( move( Something, ...), Condition) 

 

This backtracks through 10 instantiations: 

     move( b, a, 1) 

     move( b, a, 3) 

     .... 

     move( c, a, 1) 



MORE EFFICIENT: UNINSTANTATED 

VARIABLES IN GOALS AND ACTIONS 

can( move( Block, From, To),  

       [clear(Block), clear(To), on(Block, From)]). 

 

Now variables remain uninstantiated: 

 

     [clear(Something), clear(Somewhere), on(Something,a) ] 

 

This is satisfied immediately in initial situation by instantiation: 

 

     Something = c,    Somewhere = 2 

 

 



 Uninstantiated moves and goals stand for sets of moves and 

goals 

 

 However, complications arise 

    To prevent  e.g. move(c,a,c) we need: 

 

    can( move( Block, From, To),  

       [clear(Block), clear(To), on(Block, From), 

        different(Block,To), different(From,To), 

        different(Block,From)]). 

 



TREATING different(X,Y) 

 Some conditions do not depend on state of world 

 

 They cannot be achieved by actions 

 

 Add new clause for satisfied/2: 

 

        satisfied( State, [Goal | Goals])  :- 

           holds( Goal), 

           satisfied( Goals). 



Handling new type of conditions 

holds(  different( X, Y)) 

 

 (1)  If X, Y do not match then true. 

 

(2) If X==Y then fail. 

 

(3) Otherwise postpone decision until later  (maintain list of 

postponed conditions; one way of implementing this is with  

CLP - Constraint Logic Programming) 



Complications with uninstantiated actions 

 Consider 

 

            move( a, 1, X) 

 

 Does this delete clear(b)? 

 

 Two alternatives: 

    (1)  Yes if X=b 

    (2) No if different( X, b) 



PARTIAL ORDER PLANNING 

b 

a c f d 

e b 

a 

c f 

d 

e 

• The left group of three blocks can be solved 

independently of the right group 

• This gives rise to partially ordered plan 



PARTIAL ORDER PLAN 

             move( b, a, c)               move( a, table, b) 

 

             move( c, d, f)                 move( d, table, c) 

 

 The only ordering constraints are:  

 move(b,a,c) is before  move(a,table,b), and 

           move(c,d,f)  is before  move(d,table,c) 

 

 The execution of the top two actions can be interleaved in 

any order with bottom two actions; they can even be 

executed in parallel (e.g. by two robots) 



PARTIAL ORDER PLANNING and 

NONLINEAR PLANNING 

 Partial order planning is sometimes (problematically) called 

“nonlinear planning” 

 

 May lead to ambiguity: nonlinear w.r.t. actions or goals 

 

 Standard abbreviation: POP 



POP ALGORITHM OUTLINE 

 Search space of possible partial order plans (POP) 

 Start plan is { Start, Finish} 

  Start and Finish are virtual actions: 

 effect of Start is start state of the world 

 precondition of Finish is goals of plan 

 

 Plan looks like this: 

 

Start : StartState            .....            Goals : Finish 

 

 



PARTIAL ORDER PLAN 

 Each POP consists of: 

 

 set of actions {Ai, Aj, ...} 

 set of ordering constraints e.g.  Ai < Aj    (Ai before Aj) 

 set of causal links  

 

 Causal links are of form 

          causes( Ai, P, Aj) 

     read as: Ai achieves  P for Aj 

 

 Example causal link: 

          causes( move( c, a, 2), clear(a), move( a, 1, b)) 

 

 

 

 

 



CAUSAL LINKS AND CONFLICTS 

 Causal link causes( A, P, B) “protects” P in interval between 

A and B 

 

 Action C conflicts with causes( A, P, B) if C‟s effect is ~P, 

that is deletes( C, P) 

 

 Such conflicts are resolved by additional ordering 

constraints: 

            C < A    or     B < C 

     This ensures that C is outside interval A..B 



PLAN  CONSISTENT 

 A plan is consistent if there is no cycle in the ordering 

constraints and no conflict 

 

 E.g. a plan that contains A<B and B<A contains a cycle 

(therefore not consistent, obviously impossible to execute!) 

 

 Property of consistent plans:  

 

     Every linearisation of a consistent plan is a total-order 

solution whose execution from the start state will achieve the 

goals of the plan 



SUCCESSOR RELATION  

BETWEEN POPs 

A successor of a POP Plan is obtained as follows: 

 

 Select an open precondition P of an action B in Plan (i.e. a 

precondition of B not achieved by any action in Plan) 

 Find an action A that achieves P 

 A may be an existing action in Plan, or a new action; if new 

then add A to Plan and constrain: Start < A, A < Finish 

 Add to Plan causal link causes(A,P,B) and constraint A < B 

 Add appropriate ordering constraints to resolve all conflicts 

between: 

 new causal link and all existing actions, and 

 A (if new) and existing causal links  

 



SEARCHING A SPACE OF POPs 

 POP with no open precondition is a solution to our planning 

problem 

 

 Some interesting questions: 

 

 Heuristics for this search? 

 

 Means-ends planning for game playing? 

 

 Heuristic estimates can be extracted from planning graphs; 

    GRAPHPLAN is an algorithm for constructing planning 

graphs 

 

 


