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These slides are meant to be used with a Prolog system to demonstrate 

the examples, and the book: I. Bratko, Prolog Programming for Artificial 

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.  



MEANS-ENDS PLANNING 

 Problem of planning 

 Given:  

(1) possible actions in the world 

(2) start state of the world 

(3) goals to be achieved 

 Find: 

A plan to achieve the goals 

 

 Plan = sequence of actions, i.e. totally ordered set of actions 

 Plan may also be partially ordered set of actions 

 For a start, we consider total order planning 



PLANNING BY MEANS-ENDS ANALYSIS 

 Plans can be constructed by the familiar state-space search 

 

 Alternatively, plans can be constructed through “means-

ends analysis” 

 

 In narrow sense, “planning” refers to means-ends planning 

 

 Means-ends stands for: 

 ends ~ goals   (goals of plan) 

 means ~ actions  (actions the agent can perform) 

 

 The planner reasons about what actions can possibly 

achieve what goals 



Example: mobile robots 

Robot 1 Robot 2 Robot 3 

Robots can move along green corridors 

 

Task: Robot 1 wants to move into pink 

 



Solving with state-space 

Robot 1 Robot 2 Robot 3 

Task: Robot 1 wants to move into pink 

 

Construct state-space graph:  

states + successor relation between states 



Solving by means-ends planner 

Robot 1 Robot 2 Robot 3 

Task: Robot 1 wants to move into pink 

 

Formulate goal 

Formulate actions in terms of preconditions and effects 



Solving by means-ends planner 

Robot 1 Robot 2 Robot 3 

Means-ends reasoning may proceed like this: 

 

First idea: Robot1 moves horizontally to “pink” 

Next: Is this action possible? 

 No, action requires free path for Robot1 to pink 

Next: How can I enable Robot1 move by making path free?  

 Now planner‟s next subgoal is “Make horizontal path free” 

Idea: Robot2 moves away from bottom horizontal path  

      Then Robot1 can move to pink, which completes the plan 



 We consider  the “classical planning” setting which 

assumes: 

 

 The world is completely observable 

 Actions‟ effects are deterministic (completely predicateble, no 

uncertainty) 

 Any changes in the world only occur as results of agent‟s actions, 

    but not “on their own” 

 Implicit time: actions have no durations; time is only reflected in the 

order of actions 

CLASSICAL PLANNING 



Representation 

 How to represent a classical planning problem? 

 

 Traditional, “STRIPS-like” representation, introduced by the 

STRIPS planner (Stanford Research Institute Problem 

Solver, 1970‟s) 



A BLOCKS WORLD PROBLEM 

                       c 

                       a               b 

 

                       1      2      3       4 

                         

 Three blocks a, b, c; four locations 1, 2, 3, 4 

 

 Relationships in initial state:  

 on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c) 

 

 Goal of plan e.g. build stack a, b, c 

 Goals stated as: on(a,b), on(b,c) 

 

 

 

 



Representing planning problems 

 A goal:   

        on(a,c) 

 

 An action: 

        move( a, b, c) 

 

 Action‟s preconditions: 

        clear(a), on(a,b), clear(c) 

 

 Action‟s effects: 

        on(a,c), clear(b),  not on(a,b), not clear(c) 

add 

delete 



Action schema 

 Represents a number of actions by using variables 

 

 move( X, Y, Z) 

 

            X stands for any block 

   Y, Z stand for any block or location 



BLOCKS WORLD:  

STRIPS REPRESENTATION 

                     X 

 

                     Y                     Z 

 

Action: move( X, Y, Z)      

 

Preconditions: on( X, Y), clear( X), clear( Y) 

 

Add list:  on( X, Z), clear( Y) 

 

Delete list: on( X, Y), clear( Z)               



BLOCKS WORLD: STRIPS-LIKE 

REPRESENTATION IN PROLOG 

% can( Action, Condition): Action possible if Condition true 

  

can( move( Block, From, To), [ clear( Block), clear( To), on( Block, From)] ) 

:- 

  block( Block),         % Block to be moved 

  object( To),             % "To" is a block or a place 

  To \== Block,          % Block cannot be moved to itself 

  object( From),         % "From" is a block or a place 

  From \== To,           % Move to new position 

  Block \== From.        % Block not moved from itself 

  

 



ADDS, DELETES 

% adds( Action, Relationships): Action establishes Relationships 

  

adds( move(X,From,To), [ on(X,To), clear(From)]). 

 

  

% deletes( Action, Relationships): Action destroys Relationships 

  

deletes( move(X,From,To), [ on(X,From), clear(To)]). 

 



BLOCKS AND PLACES 

object( X)  :-           % X is an objects if 

  place( X)              % X is a place 

  ;                            % or 

  block( X).             % X is a block 

  

  

% A blocks world 

  

block( a).   block( b).   block( c). 

  

place( 1).    place( 2).    place( 3).    place( 4). 

 



A STATE IN BLOCKS WORLD 

%  A state in the blocks world 

% 

%             c 

%             a b 

%             ==== 

%  place  1234 

  

state1( [ clear(2), clear(4), clear(b), clear(c), on(a,1), on(b,3), on(c,a) ] ). 

 

 



BLOCKS WORLD  

MEANS-ENDS REASONING 

                       c 

                       a               b 

 

                       1      2      3       4 

                         

True in this state:  

on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c) 

 

Let goal of plan be on(a,b); find a plan: 

 Which action establishes on(a,b)?   move(a,X,b) 

      What is the precondition COND for this move? 

           Set COND as intermediate goal, find plan to achieve COND 

        ... 

  

 

 

 



MEANS-ENDS PLANNING: 

A FIRST IDEA 

This can be easily translated into Prolog, next slide 



A SIMPLE MEANS-ENDS PLANNER  

IN PROLOG 

%   plan( State, Goals, Plan, FinalState) 

  

plan( State, Goals, [], State)  :- 

  satisfied( State, Goals). 

   

plan( State, Goals, Plan, FinalState)  :- 

  conc( PrePlan, [Action | PostPlan], Plan),        % Divide plan 

  select( State, Goals, Goal),                                % Select a goal 

  achieves( Action, Goal),                                     % Relevant action 

  can( Action, Condition), 

  plan( State, Condition, PrePlan, MidState1),       % Enable Action 

  apply( MidState1, Action, MidState2),                  % Apply Action 

  plan( MidState2, Goals, PostPlan, FinalState).    % Remaining goals 

 



PROCEDURAL ASPECTS 

  

%  The way plan is decomposed into stages by conc, the  

%  precondition plan (PrePlan) is found in breadth-first 

%  fashion. However, the length of the rest of plan is not  

%  restricted and goals are achieved in depth-first style. 

  

plan( State, Goals, Plan, FinalState)  :- 

  conc( PrePlan, [Action | PostPlan], Plan),                 % Divide plan 

  ... 

  plan( State, Condition, PrePlan, MidState1),             % Breadth-first 

  apply( MidState1, Action, MidState2),                        % Apply Action 

  plan( MidState2, Goals, PostPlan, FinalState).          % Depth-first 

 
 



PROCEDURAL ASPECTS: GENERATED 

PLANS CAN BE VERY AWKWARD 

?- start1( S), plan( S, [on(a,b), on(b,c)], P). 

 

P = [ move(b,3,c), 

        move(b,c,3), 

        move(c,a,2), 

        move(a,1,b), 

        move(a,b,1), 

        move(b,3,c) , 

        move(a,1,b)] 

 

This is far from shortest plan! 

Try to explain how the planner found this 

 

 

 

  c  

  a b 

  ==== 

  1234 



PROCEDURAL ASPECTS 

 conc( PrePlan, [Action | PostPlan], Plan)  

       enforces a strange combination of search strategies: 

 

    1.  Iterative deepening w.r.t. PrePlan 

    2.  Depth-first w.r.t. PostPlan 

 

 We can force global iterative deepening by adding at front: 

    conc( Plan, _, _) 

 

 

 



A SIMPLE MEANS-ENDS PLANNER 

WITH ITERATIVE DEEPENING 

%   plan( State, Goals, Plan, FinalState) 

  

plan( State, Goals, [], State)  :- 

  satisfied( State, Goals). 

   

plan( State, Goals, Plan, FinalState)  :- 

  conc( Plan, _, _),               % Shortest plans first 

  conc( PrePlan, [Action | PostPlan], Plan),         % Divide plan 

  select( State, Goals, Goal),                                % Select a goal 

  achieves( Action, Goal),                                     % Relevant action 

  can( Action, Condition), 

  plan( State, Condition, PrePlan, MidState1),       % Breadth-first 

  apply( MidState1, Action, MidState2),                  % Apply Action 

  plan( MidState2, Goals, PostPlan, FinalState).    % Breadth-first 

 



?- start( S), plan( S, [on(a,b), on(b,c)], P). 

 

P  =   

    [ move( c, a, 2), 

       move( b, 3, a), 

       move( b, a, c), 

       move( a, 1, b) ] 

 

 This is a surprise!  

 This is still suboptimal, and quite mysterious! 

 How can this be explained? How the second move got 

into the plan 



PROBLEM WITH COMPLETENESS 

 Even with global iterative deepening, our planner still has 

problems.  

 

 E.g. it finds a four step plan for our example blocks task 

 

 Why???  Incompleteness! 

 

 Problem: locality; sometimes referred to as „linearity‟ 

Planner keeps working myopicly on just one goal, and only 

when this is achieved, it starts working on a second goal. So it 

may fail to consider at all some useful actions 

 

 



GOAL REGRESSION 

 Goal regression overcomes incompleteness; it achieves 

global planning 

 

 Main mechanism: “Regressing Goals through Action” 

 

         RegressedGoals                        Goals 

                                          Action 

 

 Given Goals and Actions, find RegressedGoals 

 That is: what has to be true before Action so that Goals are 

true after Action? 

 

 



GOAL REGRESSION 

 

                                            can(A) 

 

 

      del(A)                                               Goals 

 

 

                                             add(A) 

 

RegressedGoals = Goals + can(A) - add(A)  

Goals and del(A) must be disjoint 



GOAL REGRESSION ENABLES  

GLOBAL PLANNING 

 

 It makes the planner consider all relevant actions at any 

point of planning 

 

 



EXAMPLE: ROBOTS MOVING IN 

RECTANGULAR GRID 

 
 

                          4        5       6 
 
                     a      b     c 
                           1       2      3       
 
 
 
Robots a, b, c, cells 1, ..., 6 
 
Goal: at(a,3) 
 
Plan:  m(b,2,5),  m(a,1,2),  m(c,3,6),  m(a,2,3) 
 



DOMAIN DEFINITION 

% m(R,A,B): robot R moves from cell A to cell B 

 

can( m(R,A,B), [ at(R,A), c(B)])  :- 

  robot(R), adjacent(A,B). 

 

adds( m(R,A,B), [ at(R,B), c(A)]). 

 

deletes( m(R,A,B), [ at(R,A), c(B)]). 

 

adjacent( 1, 2). adjacent( 2, 1). adjacent( 1, 4). 

... 



FINDING PLAN FOR  at(a,3) 

Start state: at(a,1),at(b,2),at(c,3),c(4),c(5),c(6) 

 

at(b,2),c(5),at(a,1),c(6),at(c,3) 

   m(b,2,5) 

           at(a,1),c(2),c(6),at(c,3) 

             m(a,1,2) 

                                                    at(a,2),at(c,3),c(6) 

          m(c,3,6) 

                                                                          at(a,2),c(3) 

          m(a,2,3) 

                                                                                                        at(a,3) 

             m(a,6,3) 

                                                      at(a,6),c(3) 



EXERCISE 

 Demonstrate that plan of length 3 for achieving 

on(a,b) and on(b,c) in blocks world from our usual 

start state can be generated by the goal regression 

mechanism 



A means-ends planner with  

goal regression in Prolog 

 
  

%   plan( State, Goals, Plan) 

  

plan( State, Goals, [ ])  :- 

  satisfied( State, Goals).                  % Goals true in State 

  

  



PLANNER WITH GOAL REGR. CTD. 

%   plan( State, Goals, Plan) 

  

plan( State, Goals, [ ])  :- 

  satisfied( State, Goals).                  % Goals true in State 

 

plan( State, Goals, Plan)  :- 

  conc( PrePlan, [Action], Plan),        % Enforce breadth-first effect 

  select( State, Goals, Goal),             % Select a goal 

  achieves( Action, Goal), 

  can( Action, Condition),           % Ensure Action contains no variables 

  preserves( Action, Goals),                             % Protect Goals 

  regress( Goals, Action, RegressedGoals),    % Regress Goals  

  plan( State, RegressedGoals, PrePlan). 

 



PLANNER WITH GOAL REGR. CTD. 

preserves( Action, Goals)  :-          % Action does not destroy Goals 

  deletes( Action, Relations), 

  \+ ( member( Goal, Relations), 

        member( Goal, Goals) ). 

 



PLANNER WITH GOAL REGR. CTD. 

regress( Goals, Action, RegressedGoals)  :-        

         % Regress Goals through Action 

    adds( Action, NewRelations), 

    delete_all( Goals, NewRelations, RestGoals), 

    can( Action, Condition), 

    addnew( Condition, RestGoals, RegressedGoals).   

                 % Add precondition, check if RegressedGoals impossible 

      % For example: on(a,b) and clear(b) is impossible 

 



DOMAIN KNOWLEDGE 

 At which places in this program domain-specific knowledge 

can be used? 

 

 select( State, Goals, Goal) 

       Which goal next (Last)? 

 

 achieves( Action Goal) 

        Which action among those that achieve Goal 

 

 impossible( Goal, Goals) 

       Avoid impossible tasks 

 

 Heuristic function h in state-space goal-regression planner? 

 

 



STATE SPACE FOR PLANNING 

WITH GOAL REGRESSION 

Goals 
RegGoals2 

RegGoals1 

StartState 

A2 

A1 

Begin with Goals, search towards StartState 



SEARCHING SPACE OF  

SETS OF GOALS 

 What are states in this “state space”? Sets of goals 

 

 What is the goal condition?  Goals in StartState 

 

 Can we search with A* 

 

 What could be a heuristic function? 

 

 Maybe:  h = | Goals – StartState | 

 

 For the blocks world, does this h satisfy the 

admissibility condition from the admissibility theorem? 

 

 



State space representation of means-ends  

planning with goal regression in Prolog 
  

 

:- op( 300, xfy, ->). 

  

s( Goals -> NextAction, NewGoals -> Action, 1)  :-      

                                                          % All costs are 1 

  member( Goal, Goals), 

  achieves( Action, Goal),                 % Action relevant to Goals 

  can( Action, Condition), 

  preserves( Action, Goals), 

  regress( Goals, Action, NewGoals). 

  
  

 



Goal state and heuristic 

goal( Goals -> Action) :- 

  start( State),                             % User-defined initial situation 

  satisfied( State, Goals).           % Goals true in initial situation 

 

 

h( Goals -> Action, H)  :-                          % Heuristic estimate 

  start( State), 

  delete_all( Goals, State, Unsatisfied),    % Unsatisfied goals 

  length( Unsatisfied, H).                           % Number of unsatisfied goals 

 

 



QUESTION 

 Does this heuristic function for the blocks world satisfy the 

condition of admissibility theorem for best-first search? 



UNINSTANTIATED ACTIONS 

 Our planner forces complete instantiation of actions: 

 

     can( move( Block, From, To), [ clear( Block), ...])  :- 

         block( Block), 

         object( To), 

         ... 

 

 



MAY LEAD TO INEFFICIENCY 

For example, to achieve clear(a): 

 

    move( Something, a, Somewhere) 

 

Precondition for this is established by: 

 

     can( move( Something, ...), Condition) 

 

This backtracks through 10 instantiations: 

     move( b, a, 1) 

     move( b, a, 3) 

     .... 

     move( c, a, 1) 



MORE EFFICIENT: UNINSTANTATED 

VARIABLES IN GOALS AND ACTIONS 

can( move( Block, From, To),  

       [clear(Block), clear(To), on(Block, From)]). 

 

Now variables remain uninstantiated: 

 

     [clear(Something), clear(Somewhere), on(Something,a) ] 

 

This is satisfied immediately in initial situation by instantiation: 

 

     Something = c,    Somewhere = 2 

 

 



 Uninstantiated moves and goals stand for sets of moves and 

goals 

 

 However, complications arise 

    To prevent  e.g. move(c,a,c) we need: 

 

    can( move( Block, From, To),  

       [clear(Block), clear(To), on(Block, From), 

        different(Block,To), different(From,To), 

        different(Block,From)]). 

 



TREATING different(X,Y) 

 Some conditions do not depend on state of world 

 

 They cannot be achieved by actions 

 

 Add new clause for satisfied/2: 

 

        satisfied( State, [Goal | Goals])  :- 

           holds( Goal), 

           satisfied( Goals). 



Handling new type of conditions 

holds(  different( X, Y)) 

 

 (1)  If X, Y do not match then true. 

 

(2) If X==Y then fail. 

 

(3) Otherwise postpone decision until later  (maintain list of 

postponed conditions; one way of implementing this is with  

CLP - Constraint Logic Programming) 



Complications with uninstantiated actions 

 Consider 

 

            move( a, 1, X) 

 

 Does this delete clear(b)? 

 

 Two alternatives: 

    (1)  Yes if X=b 

    (2) No if different( X, b) 



PARTIAL ORDER PLANNING 

b 

a c f d 

e b 

a 

c f 

d 

e 

• The left group of three blocks can be solved 

independently of the right group 

• This gives rise to partially ordered plan 



PARTIAL ORDER PLAN 

             move( b, a, c)               move( a, table, b) 

 

             move( c, d, f)                 move( d, table, c) 

 

 The only ordering constraints are:  

 move(b,a,c) is before  move(a,table,b), and 

           move(c,d,f)  is before  move(d,table,c) 

 

 The execution of the top two actions can be interleaved in 

any order with bottom two actions; they can even be 

executed in parallel (e.g. by two robots) 



PARTIAL ORDER PLANNING and 

NONLINEAR PLANNING 

 Partial order planning is sometimes (problematically) called 

“nonlinear planning” 

 

 May lead to ambiguity: nonlinear w.r.t. actions or goals 

 

 Standard abbreviation: POP 



POP ALGORITHM OUTLINE 

 Search space of possible partial order plans (POP) 

 Start plan is { Start, Finish} 

  Start and Finish are virtual actions: 

 effect of Start is start state of the world 

 precondition of Finish is goals of plan 

 

 Plan looks like this: 

 

Start : StartState            .....            Goals : Finish 

 

 



PARTIAL ORDER PLAN 

 Each POP consists of: 

 

 set of actions {Ai, Aj, ...} 

 set of ordering constraints e.g.  Ai < Aj    (Ai before Aj) 

 set of causal links  

 

 Causal links are of form 

          causes( Ai, P, Aj) 

     read as: Ai achieves  P for Aj 

 

 Example causal link: 

          causes( move( c, a, 2), clear(a), move( a, 1, b)) 

 

 

 

 

 



CAUSAL LINKS AND CONFLICTS 

 Causal link causes( A, P, B) “protects” P in interval between 

A and B 

 

 Action C conflicts with causes( A, P, B) if C‟s effect is ~P, 

that is deletes( C, P) 

 

 Such conflicts are resolved by additional ordering 

constraints: 

            C < A    or     B < C 

     This ensures that C is outside interval A..B 



PLAN  CONSISTENT 

 A plan is consistent if there is no cycle in the ordering 

constraints and no conflict 

 

 E.g. a plan that contains A<B and B<A contains a cycle 

(therefore not consistent, obviously impossible to execute!) 

 

 Property of consistent plans:  

 

     Every linearisation of a consistent plan is a total-order 

solution whose execution from the start state will achieve the 

goals of the plan 



SUCCESSOR RELATION  

BETWEEN POPs 

A successor of a POP Plan is obtained as follows: 

 

 Select an open precondition P of an action B in Plan (i.e. a 

precondition of B not achieved by any action in Plan) 

 Find an action A that achieves P 

 A may be an existing action in Plan, or a new action; if new 

then add A to Plan and constrain: Start < A, A < Finish 

 Add to Plan causal link causes(A,P,B) and constraint A < B 

 Add appropriate ordering constraints to resolve all conflicts 

between: 

 new causal link and all existing actions, and 

 A (if new) and existing causal links  

 



SEARCHING A SPACE OF POPs 

 POP with no open precondition is a solution to our planning 

problem 

 

 Some interesting questions: 

 

 Heuristics for this search? 

 

 Means-ends planning for game playing? 

 

 Heuristic estimates can be extracted from planning graphs; 

    GRAPHPLAN is an algorithm for constructing planning 

graphs 

 

 


