PLANNING

lvan Bratko
University of Ljubljana

These slides are meant to be used with a Prolog system to demonstrate
the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.

MEANS-ENDS PLANNING

Problem of planning
o Given:
(1) possible actions in the world
(2) start state of the world
(3) goals to be achieved
o Find:
A plan to achieve the goals

Plan = sequence of actions, I.e. totally ordered set of actions
Plan may also be partially ordered set of actions
For a start, we consider total order planning

PLANNING BY MEANS-ENDS ANALYSIS

Plans can be constructed by the familiar state-space search

Alternatively, plans can be constructed through “means-
ends analysis”

In narrow sense, “planning” refers to means-ends planning

Means-ends stands for:
o ends ~ goals (goals of plan)
o means ~ actions (actions the agent can perform)

The planner reasons about what actions can possibly
achieve what goals

Example: mobile robots

Robot 1 Robot 2 Robot 3

Robots can move along green corridors

Task: Robot 1 wants to move into pink

Solving with state-space

Robot 1 Robot 2 Robot 3

Task: Robot 1 wants to move into pink

Construct state-space graph:
states + successor relation between states

Solving by means-ends planner

Robot 1 Robot 2 Robot 3

Task: Robot 1 wants to move into pink

Formulate goal
Formulate actions in terms of preconditions and effects

Solving by means-ends planner

Robot 1 Robot 2 Robot 3

Means-ends reasoning may proceed like this:

First idea: Robot1 moves horizontally to “pink”
Next: Is this action possible?
No, action requires free path for Robotl to pink
Next: How can | enable Robotl move by making path free?
Now planner’s next subgoal is “Make horizontal path free”
ldea: Robot2 moves away from bottom horizontal path
Then Robotl can move to pink, which completes the plan

CLASSICAL PLANNING

" We consider the “classical planning” setting which
assumes:

o The world is completely observable

o Actions’ effects are deterministic (completely predicateble, no
uncertainty)

o Any changes in the world only occur as results of agent’s actions,
but not “on their own”

o Implicit time: actions have no durations; time is only reflected in the
order of actions

Representation

" How to represent a classical planning problem?

" Traditional, “STRIPS-like” representation, introduced by the
STRIPS planner (Stanford Research Institute Problem
Solver, 1970’s)

A BLOCKS WORLD PROBLEM

" Three blocks a, b, c; four locations 1, 2, 3, 4

" Relationships in initial state:
on(c,a), on(a,1), on(b,3), clear(2), clear(4), clear(b), clear(c)

" Goal of plan e.g. build stack a, b, c
Goals stated as: on(a,b), on(b,c)

Representing planning problems

A goal:
on(a,c)

An action:
move(a, b, ¢)

Action’s preconditions:
clear(a), on(a,b), clear(c) add

delete

Action’s effects: _—
on(a,c), clear(b), not on(a,b), not clear(c)

Action schema

" Represents a number of actions by using variables
" move(X,Y, 2Z)

X stands for any block
Y, Z stand for any block or location

BLOCKS WORLD:
STRIPS REPRESENTATION

Action: move(X, Y, Z)

~
7

Preconditions: on(X, Y), clear(X), clear(Y)
Add list: on(X, Z), clear(Y)

Delete list: on(X, Y), clear(Z)

BLOCKS WORLD: STRIPS-LIKE
REPRESENTATION IN PROLOG

% can(Action, Condition): Action possible if Condition true

can(move(Block, From, To), [clear(Block), clear(To), on(Block, From)])

block(Block), % Block to be moved

object(To), % "To" is a block or a place

To \== Block, % Block cannot be moved to itself
object(From), % "From" is a block or a place
From \==To, % Move to new position

Block \== From. % Block not moved from itself

ADDS, DELETES

% adds(Action, Relationships): Action establishes Relationships

adds(move(X,From,To), [on(X,To), clear(From)]).

% deletes(Action, Relationships): Action destroys Relationships

deletes(move(X,From,To), [on(X,From), clear(To)]).

BLOCKS AND PLACES

object(X) :- % X'is an objects if
place(X) % X'is a place
, % or
block(X). % X'is a block

% A blocks world

block(a). block(b). block(c).

place(1). place(2). place(3). place(4).

A STATE IN BLOCKS WORLD

% A state in the blocks world
%

% C

% ab

o —===

% place 1234

state1([clear(2), clear(4), clear(b), clear(c), on(a,1), on(b,3), on(c,a)]).

BLOCKS WORLD
MEANS-ENDS REASONING

True In this state:
on(c,a), on(a,l1), on(b,3), clear(2), clear(4), clear(b), clear(c)

Let goal of plan be on(a,b); find a plan:
Which action establishes on(a,b)? move(a,X,b)
What is the precondition COND for this move?
Set COND as intermediate goal, find plan to achieve COND

MEANS-ENDS PLANNING:
A FIRST IDEA

Condition Goal Goals
(} PrePlan ’Q Action ,O PostPlan ’O
State MidStatel MidState2 FinalState

This can be easily translated into Prolog, next slide

A SIMPLE MEANS-ENDS PLANNER
IN PROLOG

% plan(State, Goals, Plan, FinalState)

plan(State, Goals, [], State) :-
satisfied(State, Goals).

plan(State, Goals, Plan, FinalState) :-

conc(PrePlan, [Action | PostPlan], Plan), % Divide plan
select(State, Goals, Goal), % Select a goal
achieves(Action, Goal), % Relevant action

can(Action, Condition),

plan(State, Condition, PrePlan, MidState1), % Enable Action
apply(MidState1, Action, MidState2), % Apply Action
plan(MidState2, Goals, PostPlan, FinalState). % Remaining goals

PROCEDURAL ASPECTS

% The way plan is decomposed into stages by conc, the
% precondition plan (PrePlan) is found in breadth-first
% fashion. However, the length of the rest of plan is not
% restricted and goals are achieved in depth-first style.

plan(State, Goals, Plan, FinalState) :-

conc(PrePlan, [Action | PostPlan], Plan), % Divide plan
plan(State, Condition, PrePlan, MidState1), % Breadth-first
apply(MidState1, Action, MidState2), % Apply Action

plan(MidState2, Goals, PostPlan, FinalState). % Depth-first

PROCEDURAL ASPECTS: GENERATED
PLANS CAN BE VERY AWKWARD

?- startl(S), plan(S, [on(a,b), on(b,c)], P). C

P =[move(b,3,c), ====
move(b,c,3), 1234

move(c,a,2),
move(a,l1,b),
move(a,b,1),
move(b,3,c),
move(a,l,b)]

This is far from shortest plan!
Try to explain how the planner found this

PROCEDURAL ASPECTS

" conc(PrePlan, [Action | PostPlan], Plan)
enforces a strange combination of search strategies:

1. Iterative deepening w.r.t. PrePlan
2. Depth-first w.r.t. PostPlan

" We can force global iterative deepening by adding at front:
conc(Plan, ,)

A SIMPLE MEANS-ENDS PLANNER
WITH ITERATIVE DEEPENING

% plan(State, Goals, Plan, FinalState)

plan(State, Goals, [], State) :-
satisfied(State, Goals).

plan(State, Goals, Plan, FinalState) :-

conc(Plan, _, _), % Shortest plans first
conc(PrePlan, [Action | PostPlan], Plan), % Divide plan
select(State, Goals, Goal), % Select a goal
achieves(Action, Goal), % Relevant action

can(Action, Condition),

plan(State, Condition, PrePlan, MidState1), % Breadth-first
apply(MidState1, Action, MidState2), % Apply Action
plan(MidState2, Goals, PostPlan, FinalState). % Breadth-first

?- start(S), plan(S, [on(a,b), on(b,c)], P).

P =
[move(c, a, 2),
move(b, 3, a),
move(b, a, ¢),
move(a, 1, b)]

" This Is a surprise!
" This is still suboptimal, and quite mysterious!

" How can this be explained? How the second move got
Into the plan

PROBLEM WITH COMPLETENESS

" Even with global iterative deepening, our planner still has
problems.

" E.g. it finds a four step plan for our example blocks task
" Why??? Incompleteness!

" Problem: locality; sometimes referred to as ‘linearity’

Planner keeps working myopicly on just one goal, and only
when this is achieved, it starts working on a second goal. So it
may fail to consider at all some useful actions

GOAL REGRESSION

Goal regression overcomes incompleteness; it achieves
global planning

Main mechanism: “Regressing Goals through Action”

RegressedGoals > Goals
Action

Given Goals and Actions, find RegressedGoals

That iIs: what has to be true before Action so that Goals are
true after Action?

GOAL REGRESSION

can(A)

del(A) Q Goals

add(A)

RegressedGoals = Goals + can(A) - add(A)
Goals and del(A) must be disjoint

GOAL REGRESSION ENABLES
GLOBAL PLANNING

" |t makes the planner consider all relevant actions at any
point of planning

EXAMPLE: ROBOTS MOVING IN
RECTANGULAR GRID

4 5 6
a b |c
1 2 3

Robots a, b, c,cells 1, ..., 6
Goal: at(a,3)
Plan: m(b,2,5), m(a,1,2), m(c,3,6), m(a,2,3)

DOMAIN DEFINITION

% m(R,A,B): robot R moves from cell A to cell B

can(m(R,A,B), [at(R,A), c(B)]) :-
robot(R), adjacent(A,B).

adds(m(R,A,B), [at(R,B), c(A)]).
deletes(m(R,A,B), [at(R,A), c(B)]).

adjacent(1, 2). adjacent(2, 1). adjacent(1, 4).

FINDING PLAN FOR at(a,3)

Start state: at(a,1),at(b,2),at(c,3),c(4),c(5),c(6)

at(b,2),c(5),at(a,1),c(6),at(c,3)

\r/\n(b,Z,S)
I at(a,1),c(2),c(6),at(c,3)

/ \m(a,l,Z)

at(a,2),at(c,3),c(6)

_— (c,3,6)
/ \m C at(a,2),c(3)

>
/ m(a,2,3)
\ at(a,3)
%@6,3)

at(a,6),c(3)

EXERCISE

" Demonstrate that plan of length 3 for achieving
on(a,b) and on(b,c) in blocks world from our usual
start state can be generated by the goal regression

mechanism

A means-ends planner with
goal regression in Prolog

% plan(State, Goals, Plan)

plan(State, Goals, []) :-
satisfied(State, Goals). % Goals true in State

PLANNER WITH GOAL REGR. CTD.

% plan(State, Goals, Plan)

plan(State, Goals, []) :-
satisfied(State, Goals). % Goals true in State

plan(State, Goals, Plan) :-

conc(PrePlan, [Action], Plan), % Enforce breadth-first effect
select(State, Goals, Goal), % Select a goal

achieves(Action, Goal),

can(Action, Condition), % Ensure Action contains no variables
preserves(Action, Goals), % Protect Goals

regress(Goals, Action, RegressedGoals), % Regress Goals
plan(State, RegressedGoals, PrePlan).

PLANNER WITH GOAL REGR. CTD.

preserves(Action, Goals) :- % Action does not destroy Goals
deletes(Action, Relations),
\+ (member(Goal, Relations),
member(Goal, Goals)).

PLANNER WITH GOAL REGR. CTD.

regress(Goals, Action, RegressedGoals) :-
% Regress Goals through Action

adds(Action, NewRelations),

delete_all(Goals, NewRelations, RestGoals),

can(Action, Condition),

addnew(Condition, RestGoals, RegressedGoals).
% Add precondition, check if RegressedGoals impossible
% For example: on(a,b) and clear(b) is impossible

DOMAIN KNOWLEDGE

At which places in this program domain-specific knowledge
can be used?

select(State, Goals, Goal)
Which goal next (Last)?

achieves(Action Goal)
Which action among those that achieve Goal

Impossible(Goal, Goals)
Avoid impossible tasks

Heuristic function h in state-space goal-regression planner?

STATE SPACE FOR PLANNING
WITH GOAL REGRESSION

T Al
- RegGoalsl U
StartState Goals
— RegGoals?2 —

7 ~/

Begin with Goals, search towards StartState

SEARCHING SPACE OF
SETS OF GOALS

What are states in this “state space”? Sets of goals
What is the goal condition? Goals in StartState
Can we search with A*

What could be a heuristic function?

Maybe: h =| Goals — StartState |

For the blocks world, does this h satisfy the
admissibility condition from the admissibility theorem?

State space representation of means-ends
planning with goal regression in Prolog

.- op(300, xfy, ->).

s(Goals -> NextAction, NewGoals -> Action, 1) :-
% All costs are 1
member(Goal, Goals),
achieves(Action, Goal), % Action relevant to Goals
can(Action, Condition),
preserves(Action, Goals),
regress(Goals, Action, NewGoals).

Goal state and heuristic

goal(Goals -> Action) :-

start(State), % User-defined initial situation
satisfied(State, Goals). % Goals true in initial situation
h(Goals -> Action, H) :- % Heuristic estimate

start(State),
delete_all(Goals, State, Unsatisfied), % Unsatisfied goals
length(Unsatisfied, H). % Number of unsatisfied goals

QUESTION

" Does this heuristic function for the blocks world satisfy the
condition of admissibility theorem for best-first search?

UNINSTANTIATED ACTIONS

" Our planner forces complete instantiation of actions:

can(move(Block, From, To), [clear(Block), ...]) :-
block(Block),
object(To),

MAY LEAD TO INEFFICIENCY

For example, to achieve clear(a):
move(Something, a, Somewhere)
Precondition for this is established by:
can(move(Something, ...), Condition)
This backtracks through 10 instantiations:
move(b, a, 1)

move(b, a, 3)

move(c, a, 1)

MORE EFFICIENT: UNINSTANTATED
VARIABLES IN GOALS AND ACTIONS

can(move(Block, From, To),
[clear(Block), clear(To), on(Block, From)]).

Now variables remain uninstantiated:

[clear(Something), clear(Somewhere), on(Something,a) |

This Is satisfied immediately in initial situation by instantiation:

Something =c¢c, Somewhere =2

" Uninstantiated moves and goals stand for sets of moves and
goals

" However, complications arise
To prevent e.g. move(c,a,c) we need:

can(move(Block, From, To),
[clear(Block), clear(To), on(Block, From),
different(Block, To), different(From,To),
different(Block,From)]).

TREATING different(X,Y)

" Some conditions do not depend on state of world
" They cannot be achieved by actions
" Add new clause for satisfied/2:

satisfied(State, [Goal | Goals]) :-

holds(Goal),
satisfied(Goals).

Handling new type of conditions

holds(different(X, Y))
(1) If X, Y do not match then true.
(2) If X==Y then fall.

(3) Otherwise postpone decision until later (maintain list of
postponed conditions; one way of implementing this is with
CLP - Constraint Logic Programming)

Complications with uninstantiated actions

= Consider

move(a, 1, X)
" Does this delete clear(b)?
" Two alternatives:

(1) Yesif X=b
(2) No If different(X, b)

PARTIAL ORDER PLANNING

€

o] e ™

a
b
L

‘—hmo_

* The left group of three blocks can be solved
Independently of the right group
« This gives rise to partially ordered plan

PARTIAL ORDER PLAN

move(b, a,c) ——> move(a, table, b)
move(c,d,f) ——— move(d, table, c)

" The only ordering constraints are:
move(b,a,c) is before move(a,table,b), and
move(c,d,f) Is before move(d,table,c)

" The execution of the top two actions can be interleaved in
any order with bottom two actions; they can even be
executed in parallel (e.g. by two robots)

PARTIAL ORDER PLANNING and
NONLINEAR PLANNING

" Partial order planning is sometimes (problematically) called
“nonlinear planning”

" May lead to ambiguity: nonlinear w.r.t. actions or goals

" Standard abbreviation: POP

POP ALGORITHM OUTLINE

Search space of possible partial order plans (POP)
Start plan is { Start, Finish}

Start and Finish are virtual actions:
o effect of Start is start state of the world
o precondition of Finish is goals of plan

Plan looks like this:

Start : StartState —

— Goals : Finish

PARTIAL ORDER PLAN

® Each POP consists of:

o set of actions {A;, A;, ...}
o set of ordering constraints e.g. A;<A; (A before A)
o set of causal links

" Causal links are of form
causes(A;, P, A)
read as: A; achieves P for A

= Example causal link:
causes(move(c, a, 2), clear(a), move(a, 1, b))

CAUSAL LINKS AND CONFLICTS

" Causal link causes(A, P, B) “protects” P in interval between
A and B

" Action C conflicts with causes(A, P, B) if C’s effect is ~P,
that is deletes(C, P)

® Such conflicts are resolved by additional ordering
constraints:

C<A o B<C(C
This ensures that C Is outside interval A..B

PLAN CONSISTENT

" A plan is consistent if there is no cycle in the ordering
constraints and no conflict

" E.g. aplan that contains A<B and B<A contains a cycle
(therefore not consistent, obviously impossible to execute!)

" Property of consistent plans:

Every linearisation of a consistent plan is a total-order
solution whose execution from the start state will achieve the
goals of the plan

SUCCESSOR RELATION
BETWEEN POPs

A successor of a POP Plan is obtained as follows:

" Select an open precondition P of an action B in Plan (i.e. a
precondition of B not achieved by any action in Plan)

® Find an action A that achieves P

" A may be an existing action in Plan, or a new action; if new
then add A to Plan and constrain: Start < A, A < Finish

" Add to Plan causal link causes(A,P,B) and constraint A< B

" Add appropriate ordering constraints to resolve all conflicts
between:
o new causal link and all existing actions, and
a A (if new) and existing causal links

SEARCHING A SPACE OF POPs

" POP with no open precondition is a solution to our planning
problem

" Some interesting guestions:

o Heuristics for this search?

o Means-ends planning for game playing?

" Heuristic estimates can be extracted from planning graphs;

GRAPHPLAN is an algorithm for constructing planning
graphs

