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These slides are meant to be used with a Prolog system to demonstrate 

the examples, and the book: I. Bratko, Prolog Programming for Artificial 

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.  



PROBLEM SOLVING 

 Problems as generally represented as graphs 

 

 Problem solving corresponds to searching a graph 

 

 Two representations 

 

     (1) State space (usual graph) 

     (2) AND/OR graph 

 



A problem from blocks world 

Find a sequence of robot moves to re-arrange blocks 



Blocks world state space 

Start 

Goal 



State Space 

 State space = Directed graph 

 Nodes  ~  Problem situations 

 Arcs  ~  Actions, legal moves 

 

 Problem = ( State space, Start, Goal condition) 

 Note: several nodes may satisfy goal condition 

 

 Solving a problem  ~  Finding a path 

 Problem solving  ~  Graph search 

 Problem solution  ~  Path from start to a goal node 



Examples of representing problems in 

state space 

 Blocks world planning 

 8-puzzle, 15-puzzle 

 8 queens 

 Travelling salesman 

 Set covering 

How can these problems be represented by graphs? 

Propose corresponding state spaces 



8-puzzle 



State spaces for optimisation problems 

 Optimisation: minimise cost of solution 

 

 In blocks world:  

    actions may have different costs 

    (blocks may have different weights, ...) 

 

 Assign costs to arcs 

 

 Cost of solution  =  cost of solution path 



More complex examples 

 Making a time table 

 Production scheduling 

 Grammatical parsing 

 Interpretation of sensory data 

 Modelling from measured data 

 Finding scientific theories that account for 

experimental data 



SEARCH METHODS 

 Uninformed techniques: 

    systematically search complete graph, unguided 

 

 Informed methods: 

    Use problem specific information to guide search in 

promising directions 

 

 What is “promising”?  

 Domain specific knowledge 

 Heuristics 



Basic search methods - uninformed 

 Depth-first search 

 Breadth-first search 

 Iterative deepening 



Informed, heuristic search 

 Best-first search 

 Hill climbing, steepest descent 

 Algorithm A* 

 Beam search 

 Algorithm IDA* (Iterative Deepening A*) 

 Algorithm RBFS (Recursive Best First Search) 



Direction of search 

 Forward search: from start to goal 

 

 Backward search: from goal to start 

 

 Bidirectional search 

 

 In expert systems: 

      Forward chaining 

      Backward chaining 



Depth-first search 



Representing state space in Prolog 

 Successor relation between nodes:  

 

               s( ParentNode, ChildNode) 

 

 s/2 is non-deterministic; a  node may have many 

children that are generated through backtracking 

 

 For large, realistic spaces, s-relation cannot be stated 

explicitly for all the nodes; rather it is stated by rules 

that generate successor nodes 



A depth-first program 

% solve( StartNode, Path) 

 

solve( N, [N])  :- 

      goal( N). 

 

 

solve( N, [N | Path])  :- 

    s( N, N1), 

    solve( N1, Path). 

N 

N1 

s 

Path 

goal node 



Properties of depth-first search program 

 Is not guaranteed to find shortest solution first 

 Susceptible to infinite loops (should check for cycles) 

 Has low space complexity: only proportional to depth 

of search 

 Only requires memory to store the current path from 

start to the current node 

 When moving to alternative path, previously 

searched paths can be forgotten 



Depth-first search, problem of looping 



Iterative deepening search 

 Dept-limited search may miss a solution if depth-limit 

is set too low 

 

 This may be problematic if solution length not known 

in advance 

 

 Idea: start with small MaxDepth and 

     increase MaxDepth until solution found 



An iterative deepening program 

%  path( N1, N2, Path): 

%     generate paths from N1 to N2 of increasing length 

path( Node, Node, [Node]). 

 

path( First, Last, [Last | Path])  :- 

   path( First, OneBut Last, Path), 

   s( OneButLast, Last), 

   not member( Last, Path).            % Avoid cycle 

First Path 
OneButLast Last 



How can you see that path/3 generates 

paths of increasing length? 

First Path 
OneButLast Last 

1. clause: generate path of zero length, from First to itself  

2. clause: first generate a path Path (shortest first!), then 

generate all possible one step extensions of Path 



Use path/3 for iterative deepening 

% Find path from start node to a goal node, 

% try shortest paths first 

 

depth_first_iterative_deepening( Start, Path)  :- 

   path( Start, Node, Path),   % Generate paths from Start 

   goal( Node).                       % Path to a goal node 



Breadth-first search 

• Guaranteed to find shortest solution first 

• Best-first finds solution a-c-f 

• Depth-first finds a-b-e-j 



A breadth-first search program 

 Breadth-first search completes one level before 

moving on to next level 

 Has to keep in memory all the competing paths that 

aspire to be extended to a goal node 

 A possible representation of candidate paths: list of 

lists 

 Easiest to store paths in reverse order;  

    then, to extend a path, add a node as new head 

(easier than adding a node at end of list) 

 



Candidate paths as list of lists 

                                  a 

                  b                                 c 

        d                 e               f                    g   

[ [a] ]   initial list of candidate paths [ [b,a], [c,a] ]    after expanding a [ [c,a], [d,b,a], [e,b,a] ]  after expanding b 
[ [d,b,a], [e,b,a], [f,c,a], [g,c,a] ] 

 

On each iteration: Remove first candidate path,  

extend it and add extensions at end of list 



% solve( Start, Solution): 

%    Solution is a path (in reverse order) from Start to a goal 

 

solve( Start, Solution)  :- 

  breadthfirst( [ [Start] ], Solution). 

 

% breadthfirst( [ Path1, Path2, ...], Solution): 

%   Solution is an extension to a goal of one of paths 

 

breadthfirst( [ [Node | Path] | _ ], [Node | Path])  :- 

  goal( Node). 

 

breadthfirst( [Path | Paths], Solution)  :- 

  extend( Path, NewPaths), 

  conc( Paths, NewPaths, Paths1), 

  breadthfirst( Paths1, Solution). 

 

extend( [Node | Path], NewPaths)  :- 

  bagof( [NewNode, Node | Path], 

         ( s( Node, NewNode), not member( NewNode, [Node | Path] ) ), 

         NewPaths), 

  !. 

 

extend( Path, [] ).              % bagof failed: Node has no successor 



Breadth-first with difference lists  

 Previous program adds newly generated paths at end 

of all candidate paths: 

        conc( Paths, NewPaths, Paths1) 

 

 This is unnecessarily inefficient: conc scans whole list 

Paths before appending NewPaths 

 

 Better: represent Paths as difference list Paths-Z 

 



Adding new paths  

  Paths                  Z                       Z1 

 

 

                                 NewPaths 

Current candidate paths:  Paths - Z 

Updated candidate paths:  Paths - Z1 

Where:  conc( NewPaths, Z1, Z) 



Breadth-first with difference lists 

solve( Start, Solution)  :- 

  breadthfirst( [ [Start] | Z] - Z, Solution). 

 

breadthfirst( [ [Node | Path] | _] - _, [Node | Path] )  :- 

  goal( Node). 

 

breadthfirst( [Path | Paths] - Z, Solution)  :- 

  extend( Path, NewPaths), 

  conc( NewPaths, Z1, Z),                % Add NewPaths at end 

  Paths \== Z1,                                  % Set of candidates not empty 

  breadthfirst( Paths - Z1, Solution). 



Space effectiveness of  

breadth-first in Prolog 

Representation with list of lists appears redundant:  

all paths share initial parts 

However, surprisingly, Prolog internally constructs 

a tree! 

       a 
 
   b      c 
 
d    e 

P1  =  [a] 

P2  =  [b | P1] = [b,a] 

P3  =  [c | P1] = [c,a] 

P4  =  [d | P2] = [d,b,a] 

P5  =  [e | P2] = [e,b,a] 



Turning breadth-first into depth-first 

Breadth-first search 

On each iteration: Remove first candidate path,  

extend it and add extensions at end of list 

Modification to obtain depth-first search: 

On each iteration: Remove first candidate path,  

extend it and add extensions at beginning of list 



Complexity of basic search methods 

  For simpler analysis consider state-space as a tree 

  Uniform branching b 

  Solution at depth d 

n 

Number of nodes at level n : bn 



Time and space complexity orders 

                                          Shortest

                                          solution

                      Time     Space      guaranteed

Breadth-first           b
d            

b
d 
          yes

Depth-first             b
dmax

      dmax          no

Iterative deepening     b
d
        d           yes



Time and space complexity 

 Breadth-first and iterative deepening guarantee 

shortest solution 

 Breadth-first: high space complexity 

 Depth-first: low space complexity, but may search 

well below solution depth 

 Iterative deepening: best performance in terms of 

orders of complexity 



Time complexity of  

iterative deepening 

 Repeatedly re-generates upper levels nodes 

 Start node (level 1): d times 

 Level 2: (d -1) times 

 Level 3: (d -2) times, ... 

 Notice: Most work done at last level d , typically more 

than at all previous levels 

 

 



Overheads of iterative deepening due to 

re-generation of nodes 

nodes generated by iter. deep
nodes generated by breadth-first



b
b 1

  Example: binary tree, d =3, #nodes = 15 

 

  Breadth-first generates 15 nodes 

  Iter. deepening: 26 nodes 

  Relative overheads due to re-generation:  26/15 

 

 
 Generally: 



Backward search 

 Search from goal to start 

 

 Can be realised by re-defining successor relation as: 

 

       new_s( X, Y)  :-  s( Y, X). 

 

 New goal condition satisfied by start node 

 Only applicable if original goal node(s) known 

 Under what circumstances is backward search 

   preferred to forward search? 

 Depends on branching in forward/backward direction 



Bidirectional search 

 Search progresses from both start and goal 

 Standard search techniques can be used on re-

defined state space 

 Problem situations defined as pairs of form: 

           StartNode - GoalNode 

 



Re-defining state space for bidirectional 

search 

new_s( S - E, S1 - E1)  :- 

   s( S, S1),        % One step forward 

   s( E1, E).        % One step backward 

 

new_goal( S - S).     % Both ends coincide 

 

new_goal( S - E)  :- 

   s( S, E).               % Ends sufficiently close 

S S1 E1 E 

Original space: 



Complexity of bidirectional search 

Consider the case: forward and backward branching 

both b, uniform 

d 

d/2 d/2 

Time  ~  bd/2  + bd/2  <  bd 



Searching graphs 

Do our techniques work on graphs, not just trees? 

Graph unfolds into a tree, parts of graph may repeat  

many times 

Techniques work, but may become very inefficient 

Better: add check for repeated nodes 


