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These slides are meant to be used with a Prolog system to demonstrate 

the examples, and the book: I. Bratko, Prolog Programming for Artificial 

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.  



PROBLEM SOLVING 

 Problems as generally represented as graphs 

 

 Problem solving corresponds to searching a graph 

 

 Two representations 

 

     (1) State space (usual graph) 

     (2) AND/OR graph 

 



A problem from blocks world 

Find a sequence of robot moves to re-arrange blocks 



Blocks world state space 

Start 

Goal 



State Space 

 State space = Directed graph 

 Nodes  ~  Problem situations 

 Arcs  ~  Actions, legal moves 

 

 Problem = ( State space, Start, Goal condition) 

 Note: several nodes may satisfy goal condition 

 

 Solving a problem  ~  Finding a path 

 Problem solving  ~  Graph search 

 Problem solution  ~  Path from start to a goal node 



Examples of representing problems in 

state space 

 Blocks world planning 

 8-puzzle, 15-puzzle 

 8 queens 

 Travelling salesman 

 Set covering 

How can these problems be represented by graphs? 

Propose corresponding state spaces 



8-puzzle 



State spaces for optimisation problems 

 Optimisation: minimise cost of solution 

 

 In blocks world:  

    actions may have different costs 

    (blocks may have different weights, ...) 

 

 Assign costs to arcs 

 

 Cost of solution  =  cost of solution path 



More complex examples 

 Making a time table 

 Production scheduling 

 Grammatical parsing 

 Interpretation of sensory data 

 Modelling from measured data 

 Finding scientific theories that account for 

experimental data 



SEARCH METHODS 

 Uninformed techniques: 

    systematically search complete graph, unguided 

 

 Informed methods: 

    Use problem specific information to guide search in 

promising directions 

 

 What is “promising”?  

 Domain specific knowledge 

 Heuristics 



Basic search methods - uninformed 

 Depth-first search 

 Breadth-first search 

 Iterative deepening 



Informed, heuristic search 

 Best-first search 

 Hill climbing, steepest descent 

 Algorithm A* 

 Beam search 

 Algorithm IDA* (Iterative Deepening A*) 

 Algorithm RBFS (Recursive Best First Search) 



Direction of search 

 Forward search: from start to goal 

 

 Backward search: from goal to start 

 

 Bidirectional search 

 

 In expert systems: 

      Forward chaining 

      Backward chaining 



Depth-first search 



Representing state space in Prolog 

 Successor relation between nodes:  

 

               s( ParentNode, ChildNode) 

 

 s/2 is non-deterministic; a  node may have many 

children that are generated through backtracking 

 

 For large, realistic spaces, s-relation cannot be stated 

explicitly for all the nodes; rather it is stated by rules 

that generate successor nodes 



A depth-first program 

% solve( StartNode, Path) 

 

solve( N, [N])  :- 

      goal( N). 

 

 

solve( N, [N | Path])  :- 

    s( N, N1), 

    solve( N1, Path). 

N 

N1 

s 

Path 

goal node 



Properties of depth-first search program 

 Is not guaranteed to find shortest solution first 

 Susceptible to infinite loops (should check for cycles) 

 Has low space complexity: only proportional to depth 

of search 

 Only requires memory to store the current path from 

start to the current node 

 When moving to alternative path, previously 

searched paths can be forgotten 



Depth-first search, problem of looping 



Iterative deepening search 

 Dept-limited search may miss a solution if depth-limit 

is set too low 

 

 This may be problematic if solution length not known 

in advance 

 

 Idea: start with small MaxDepth and 

     increase MaxDepth until solution found 



An iterative deepening program 

%  path( N1, N2, Path): 

%     generate paths from N1 to N2 of increasing length 

path( Node, Node, [Node]). 

 

path( First, Last, [Last | Path])  :- 

   path( First, OneBut Last, Path), 

   s( OneButLast, Last), 

   not member( Last, Path).            % Avoid cycle 

First Path 
OneButLast Last 



How can you see that path/3 generates 

paths of increasing length? 

First Path 
OneButLast Last 

1. clause: generate path of zero length, from First to itself  

2. clause: first generate a path Path (shortest first!), then 

generate all possible one step extensions of Path 



Use path/3 for iterative deepening 

% Find path from start node to a goal node, 

% try shortest paths first 

 

depth_first_iterative_deepening( Start, Path)  :- 

   path( Start, Node, Path),   % Generate paths from Start 

   goal( Node).                       % Path to a goal node 



Breadth-first search 

• Guaranteed to find shortest solution first 

• Best-first finds solution a-c-f 

• Depth-first finds a-b-e-j 



A breadth-first search program 

 Breadth-first search completes one level before 

moving on to next level 

 Has to keep in memory all the competing paths that 

aspire to be extended to a goal node 

 A possible representation of candidate paths: list of 

lists 

 Easiest to store paths in reverse order;  

    then, to extend a path, add a node as new head 

(easier than adding a node at end of list) 

 



Candidate paths as list of lists 

                                  a 

                  b                                 c 

        d                 e               f                    g   

[ [a] ]   initial list of candidate paths [ [b,a], [c,a] ]    after expanding a [ [c,a], [d,b,a], [e,b,a] ]  after expanding b 
[ [d,b,a], [e,b,a], [f,c,a], [g,c,a] ] 

 

On each iteration: Remove first candidate path,  

extend it and add extensions at end of list 



% solve( Start, Solution): 

%    Solution is a path (in reverse order) from Start to a goal 

 

solve( Start, Solution)  :- 

  breadthfirst( [ [Start] ], Solution). 

 

% breadthfirst( [ Path1, Path2, ...], Solution): 

%   Solution is an extension to a goal of one of paths 

 

breadthfirst( [ [Node | Path] | _ ], [Node | Path])  :- 

  goal( Node). 

 

breadthfirst( [Path | Paths], Solution)  :- 

  extend( Path, NewPaths), 

  conc( Paths, NewPaths, Paths1), 

  breadthfirst( Paths1, Solution). 

 

extend( [Node | Path], NewPaths)  :- 

  bagof( [NewNode, Node | Path], 

         ( s( Node, NewNode), not member( NewNode, [Node | Path] ) ), 

         NewPaths), 

  !. 

 

extend( Path, [] ).              % bagof failed: Node has no successor 



Breadth-first with difference lists  

 Previous program adds newly generated paths at end 

of all candidate paths: 

        conc( Paths, NewPaths, Paths1) 

 

 This is unnecessarily inefficient: conc scans whole list 

Paths before appending NewPaths 

 

 Better: represent Paths as difference list Paths-Z 

 



Adding new paths  

  Paths                  Z                       Z1 

 

 

                                 NewPaths 

Current candidate paths:  Paths - Z 

Updated candidate paths:  Paths - Z1 

Where:  conc( NewPaths, Z1, Z) 



Breadth-first with difference lists 

solve( Start, Solution)  :- 

  breadthfirst( [ [Start] | Z] - Z, Solution). 

 

breadthfirst( [ [Node | Path] | _] - _, [Node | Path] )  :- 

  goal( Node). 

 

breadthfirst( [Path | Paths] - Z, Solution)  :- 

  extend( Path, NewPaths), 

  conc( NewPaths, Z1, Z),                % Add NewPaths at end 

  Paths \== Z1,                                  % Set of candidates not empty 

  breadthfirst( Paths - Z1, Solution). 



Space effectiveness of  

breadth-first in Prolog 

Representation with list of lists appears redundant:  

all paths share initial parts 

However, surprisingly, Prolog internally constructs 

a tree! 

       a 
 
   b      c 
 
d    e 

P1  =  [a] 

P2  =  [b | P1] = [b,a] 

P3  =  [c | P1] = [c,a] 

P4  =  [d | P2] = [d,b,a] 

P5  =  [e | P2] = [e,b,a] 



Turning breadth-first into depth-first 

Breadth-first search 

On each iteration: Remove first candidate path,  

extend it and add extensions at end of list 

Modification to obtain depth-first search: 

On each iteration: Remove first candidate path,  

extend it and add extensions at beginning of list 



Complexity of basic search methods 

  For simpler analysis consider state-space as a tree 

  Uniform branching b 

  Solution at depth d 

n 

Number of nodes at level n : bn 



Time and space complexity orders 

                                          Shortest

                                          solution

                      Time     Space      guaranteed

Breadth-first           b
d            

b
d 
          yes

Depth-first             b
dmax

      dmax          no

Iterative deepening     b
d
        d           yes



Time and space complexity 

 Breadth-first and iterative deepening guarantee 

shortest solution 

 Breadth-first: high space complexity 

 Depth-first: low space complexity, but may search 

well below solution depth 

 Iterative deepening: best performance in terms of 

orders of complexity 



Time complexity of  

iterative deepening 

 Repeatedly re-generates upper levels nodes 

 Start node (level 1): d times 

 Level 2: (d -1) times 

 Level 3: (d -2) times, ... 

 Notice: Most work done at last level d , typically more 

than at all previous levels 

 

 



Overheads of iterative deepening due to 

re-generation of nodes 

nodes generated by iter. deep
nodes generated by breadth-first



b
b 1

  Example: binary tree, d =3, #nodes = 15 

 

  Breadth-first generates 15 nodes 

  Iter. deepening: 26 nodes 

  Relative overheads due to re-generation:  26/15 

 

 
 Generally: 



Backward search 

 Search from goal to start 

 

 Can be realised by re-defining successor relation as: 

 

       new_s( X, Y)  :-  s( Y, X). 

 

 New goal condition satisfied by start node 

 Only applicable if original goal node(s) known 

 Under what circumstances is backward search 

   preferred to forward search? 

 Depends on branching in forward/backward direction 



Bidirectional search 

 Search progresses from both start and goal 

 Standard search techniques can be used on re-

defined state space 

 Problem situations defined as pairs of form: 

           StartNode - GoalNode 

 



Re-defining state space for bidirectional 

search 

new_s( S - E, S1 - E1)  :- 

   s( S, S1),        % One step forward 

   s( E1, E).        % One step backward 

 

new_goal( S - S).     % Both ends coincide 

 

new_goal( S - E)  :- 

   s( S, E).               % Ends sufficiently close 

S S1 E1 E 

Original space: 



Complexity of bidirectional search 

Consider the case: forward and backward branching 

both b, uniform 

d 

d/2 d/2 

Time  ~  bd/2  + bd/2  <  bd 



Searching graphs 

Do our techniques work on graphs, not just trees? 

Graph unfolds into a tree, parts of graph may repeat  

many times 

Techniques work, but may become very inefficient 

Better: add check for repeated nodes 


