
PROBLEM SOLVING AS SEARCH

Ivan Bratko

Ljubljana University

These slides are meant to be used with a Prolog system to demonstrate

the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.

PROBLEM SOLVING

 Problems as generally represented as graphs

 Problem solving corresponds to searching a graph

 Two representations

 (1) State space (usual graph)

 (2) AND/OR graph

A problem from blocks world

Find a sequence of robot moves to re-arrange blocks

Blocks world state space

Start

Goal

State Space

 State space = Directed graph

 Nodes ~ Problem situations

 Arcs ~ Actions, legal moves

 Problem = (State space, Start, Goal condition)

 Note: several nodes may satisfy goal condition

 Solving a problem ~ Finding a path

 Problem solving ~ Graph search

 Problem solution ~ Path from start to a goal node

Examples of representing problems in

state space

 Blocks world planning

 8-puzzle, 15-puzzle

 8 queens

 Travelling salesman

 Set covering

How can these problems be represented by graphs?

Propose corresponding state spaces

8-puzzle

State spaces for optimisation problems

 Optimisation: minimise cost of solution

 In blocks world:

 actions may have different costs

 (blocks may have different weights, ...)

 Assign costs to arcs

 Cost of solution = cost of solution path

More complex examples

 Making a time table

 Production scheduling

 Grammatical parsing

 Interpretation of sensory data

 Modelling from measured data

 Finding scientific theories that account for

experimental data

SEARCH METHODS

 Uninformed techniques:

 systematically search complete graph, unguided

 Informed methods:

 Use problem specific information to guide search in

promising directions

 What is “promising”?

 Domain specific knowledge

 Heuristics

Basic search methods - uninformed

 Depth-first search

 Breadth-first search

 Iterative deepening

Informed, heuristic search

 Best-first search

 Hill climbing, steepest descent

 Algorithm A*

 Beam search

 Algorithm IDA* (Iterative Deepening A*)

 Algorithm RBFS (Recursive Best First Search)

Direction of search

 Forward search: from start to goal

 Backward search: from goal to start

 Bidirectional search

 In expert systems:

 Forward chaining

 Backward chaining

Depth-first search

Representing state space in Prolog

 Successor relation between nodes:

 s(ParentNode, ChildNode)

 s/2 is non-deterministic; a node may have many

children that are generated through backtracking

 For large, realistic spaces, s-relation cannot be stated

explicitly for all the nodes; rather it is stated by rules

that generate successor nodes

A depth-first program

% solve(StartNode, Path)

solve(N, [N]) :-

 goal(N).

solve(N, [N | Path]) :-

 s(N, N1),

 solve(N1, Path).

N

N1

s

Path

goal node

Properties of depth-first search program

 Is not guaranteed to find shortest solution first

 Susceptible to infinite loops (should check for cycles)

 Has low space complexity: only proportional to depth

of search

 Only requires memory to store the current path from

start to the current node

 When moving to alternative path, previously

searched paths can be forgotten

Depth-first search, problem of looping

Iterative deepening search

 Dept-limited search may miss a solution if depth-limit

is set too low

 This may be problematic if solution length not known

in advance

 Idea: start with small MaxDepth and

 increase MaxDepth until solution found

An iterative deepening program

% path(N1, N2, Path):

% generate paths from N1 to N2 of increasing length

path(Node, Node, [Node]).

path(First, Last, [Last | Path]) :-

 path(First, OneBut Last, Path),

 s(OneButLast, Last),

 not member(Last, Path). % Avoid cycle

First Path
OneButLast Last

How can you see that path/3 generates

paths of increasing length?

First Path
OneButLast Last

1. clause: generate path of zero length, from First to itself

2. clause: first generate a path Path (shortest first!), then

generate all possible one step extensions of Path

Use path/3 for iterative deepening

% Find path from start node to a goal node,

% try shortest paths first

depth_first_iterative_deepening(Start, Path) :-

 path(Start, Node, Path), % Generate paths from Start

 goal(Node). % Path to a goal node

Breadth-first search

• Guaranteed to find shortest solution first

• Best-first finds solution a-c-f

• Depth-first finds a-b-e-j

A breadth-first search program

 Breadth-first search completes one level before

moving on to next level

 Has to keep in memory all the competing paths that

aspire to be extended to a goal node

 A possible representation of candidate paths: list of

lists

 Easiest to store paths in reverse order;

 then, to extend a path, add a node as new head

(easier than adding a node at end of list)

Candidate paths as list of lists

 a

 b c

 d e f g

[[a]] initial list of candidate paths [[b,a], [c,a]] after expanding a [[c,a], [d,b,a], [e,b,a]] after expanding b
[[d,b,a], [e,b,a], [f,c,a], [g,c,a]]

On each iteration: Remove first candidate path,

extend it and add extensions at end of list

% solve(Start, Solution):

% Solution is a path (in reverse order) from Start to a goal

solve(Start, Solution) :-

 breadthfirst([[Start]], Solution).

% breadthfirst([Path1, Path2, ...], Solution):

% Solution is an extension to a goal of one of paths

breadthfirst([[Node | Path] | _], [Node | Path]) :-

 goal(Node).

breadthfirst([Path | Paths], Solution) :-

 extend(Path, NewPaths),

 conc(Paths, NewPaths, Paths1),

 breadthfirst(Paths1, Solution).

extend([Node | Path], NewPaths) :-

 bagof([NewNode, Node | Path],

 (s(Node, NewNode), not member(NewNode, [Node | Path])),

 NewPaths),

 !.

extend(Path, []). % bagof failed: Node has no successor

Breadth-first with difference lists

 Previous program adds newly generated paths at end

of all candidate paths:

 conc(Paths, NewPaths, Paths1)

 This is unnecessarily inefficient: conc scans whole list

Paths before appending NewPaths

 Better: represent Paths as difference list Paths-Z

Adding new paths

 Paths Z Z1

 NewPaths

Current candidate paths: Paths - Z

Updated candidate paths: Paths - Z1

Where: conc(NewPaths, Z1, Z)

Breadth-first with difference lists

solve(Start, Solution) :-

 breadthfirst([[Start] | Z] - Z, Solution).

breadthfirst([[Node | Path] | _] - _, [Node | Path]) :-

 goal(Node).

breadthfirst([Path | Paths] - Z, Solution) :-

 extend(Path, NewPaths),

 conc(NewPaths, Z1, Z), % Add NewPaths at end

 Paths \== Z1, % Set of candidates not empty

 breadthfirst(Paths - Z1, Solution).

Space effectiveness of

breadth-first in Prolog

Representation with list of lists appears redundant:

all paths share initial parts

However, surprisingly, Prolog internally constructs

a tree!

 a

 b c

d e

P1 = [a]

P2 = [b | P1] = [b,a]

P3 = [c | P1] = [c,a]

P4 = [d | P2] = [d,b,a]

P5 = [e | P2] = [e,b,a]

Turning breadth-first into depth-first

Breadth-first search

On each iteration: Remove first candidate path,

extend it and add extensions at end of list

Modification to obtain depth-first search:

On each iteration: Remove first candidate path,

extend it and add extensions at beginning of list

Complexity of basic search methods

 For simpler analysis consider state-space as a tree

 Uniform branching b

 Solution at depth d

n

Number of nodes at level n : bn

Time and space complexity orders

 Shortest

 solution

 Time Space guaranteed

Breadth-first b
d

b
d
 yes

Depth-first b
dmax

 dmax no

Iterative deepening b
d
 d yes

Time and space complexity

 Breadth-first and iterative deepening guarantee

shortest solution

 Breadth-first: high space complexity

 Depth-first: low space complexity, but may search

well below solution depth

 Iterative deepening: best performance in terms of

orders of complexity

Time complexity of

iterative deepening

 Repeatedly re-generates upper levels nodes

 Start node (level 1): d times

 Level 2: (d -1) times

 Level 3: (d -2) times, ...

 Notice: Most work done at last level d , typically more

than at all previous levels

Overheads of iterative deepening due to

re-generation of nodes

nodes generated by iter. deep
nodes generated by breadth-first

b
b 1

 Example: binary tree, d =3, #nodes = 15

 Breadth-first generates 15 nodes

 Iter. deepening: 26 nodes

 Relative overheads due to re-generation: 26/15

 Generally:

Backward search

 Search from goal to start

 Can be realised by re-defining successor relation as:

 new_s(X, Y) :- s(Y, X).

 New goal condition satisfied by start node

 Only applicable if original goal node(s) known

 Under what circumstances is backward search

 preferred to forward search?

 Depends on branching in forward/backward direction

Bidirectional search

 Search progresses from both start and goal

 Standard search techniques can be used on re-

defined state space

 Problem situations defined as pairs of form:

 StartNode - GoalNode

Re-defining state space for bidirectional

search

new_s(S - E, S1 - E1) :-

 s(S, S1), % One step forward

 s(E1, E). % One step backward

new_goal(S - S). % Both ends coincide

new_goal(S - E) :-

 s(S, E). % Ends sufficiently close

S S1 E1 E

Original space:

Complexity of bidirectional search

Consider the case: forward and backward branching

both b, uniform

d

d/2 d/2

Time ~ bd/2 + bd/2 < bd

Searching graphs

Do our techniques work on graphs, not just trees?

Graph unfolds into a tree, parts of graph may repeat

many times

Techniques work, but may become very inefficient

Better: add check for repeated nodes

