
PROBLEM SOLVING AS SEARCH

Ivan Bratko

Ljubljana University

These slides are meant to be used with a Prolog system to demonstrate

the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.

PROBLEM SOLVING

 Problems as generally represented as graphs

 Problem solving corresponds to searching a graph

 Two representations

 (1) State space (usual graph)

 (2) AND/OR graph

A problem from blocks world

Find a sequence of robot moves to re-arrange blocks

Blocks world state space

Start

Goal

State Space

 State space = Directed graph

 Nodes ~ Problem situations

 Arcs ~ Actions, legal moves

 Problem = (State space, Start, Goal condition)

 Note: several nodes may satisfy goal condition

 Solving a problem ~ Finding a path

 Problem solving ~ Graph search

 Problem solution ~ Path from start to a goal node

Examples of representing problems in

state space

 Blocks world planning

 8-puzzle, 15-puzzle

 8 queens

 Travelling salesman

 Set covering

How can these problems be represented by graphs?

Propose corresponding state spaces

8-puzzle

State spaces for optimisation problems

 Optimisation: minimise cost of solution

 In blocks world:

 actions may have different costs

 (blocks may have different weights, ...)

 Assign costs to arcs

 Cost of solution = cost of solution path

More complex examples

 Making a time table

 Production scheduling

 Grammatical parsing

 Interpretation of sensory data

 Modelling from measured data

 Finding scientific theories that account for

experimental data

SEARCH METHODS

 Uninformed techniques:

 systematically search complete graph, unguided

 Informed methods:

 Use problem specific information to guide search in

promising directions

 What is “promising”?

 Domain specific knowledge

 Heuristics

Basic search methods - uninformed

 Depth-first search

 Breadth-first search

 Iterative deepening

Informed, heuristic search

 Best-first search

 Hill climbing, steepest descent

 Algorithm A*

 Beam search

 Algorithm IDA* (Iterative Deepening A*)

 Algorithm RBFS (Recursive Best First Search)

Direction of search

 Forward search: from start to goal

 Backward search: from goal to start

 Bidirectional search

 In expert systems:

 Forward chaining

 Backward chaining

Depth-first search

Representing state space in Prolog

 Successor relation between nodes:

 s(ParentNode, ChildNode)

 s/2 is non-deterministic; a node may have many

children that are generated through backtracking

 For large, realistic spaces, s-relation cannot be stated

explicitly for all the nodes; rather it is stated by rules

that generate successor nodes

A depth-first program

% solve(StartNode, Path)

solve(N, [N]) :-

 goal(N).

solve(N, [N | Path]) :-

 s(N, N1),

 solve(N1, Path).

N

N1

s

Path

goal node

Properties of depth-first search program

 Is not guaranteed to find shortest solution first

 Susceptible to infinite loops (should check for cycles)

 Has low space complexity: only proportional to depth

of search

 Only requires memory to store the current path from

start to the current node

 When moving to alternative path, previously

searched paths can be forgotten

Depth-first search, problem of looping

Iterative deepening search

 Dept-limited search may miss a solution if depth-limit

is set too low

 This may be problematic if solution length not known

in advance

 Idea: start with small MaxDepth and

 increase MaxDepth until solution found

An iterative deepening program

% path(N1, N2, Path):

% generate paths from N1 to N2 of increasing length

path(Node, Node, [Node]).

path(First, Last, [Last | Path]) :-

 path(First, OneBut Last, Path),

 s(OneButLast, Last),

 not member(Last, Path). % Avoid cycle

First Path
OneButLast Last

How can you see that path/3 generates

paths of increasing length?

First Path
OneButLast Last

1. clause: generate path of zero length, from First to itself

2. clause: first generate a path Path (shortest first!), then

generate all possible one step extensions of Path

Use path/3 for iterative deepening

% Find path from start node to a goal node,

% try shortest paths first

depth_first_iterative_deepening(Start, Path) :-

 path(Start, Node, Path), % Generate paths from Start

 goal(Node). % Path to a goal node

Breadth-first search

• Guaranteed to find shortest solution first

• Best-first finds solution a-c-f

• Depth-first finds a-b-e-j

A breadth-first search program

 Breadth-first search completes one level before

moving on to next level

 Has to keep in memory all the competing paths that

aspire to be extended to a goal node

 A possible representation of candidate paths: list of

lists

 Easiest to store paths in reverse order;

 then, to extend a path, add a node as new head

(easier than adding a node at end of list)

Candidate paths as list of lists

 a

 b c

 d e f g

[[a]] initial list of candidate paths [[b,a], [c,a]] after expanding a [[c,a], [d,b,a], [e,b,a]] after expanding b
[[d,b,a], [e,b,a], [f,c,a], [g,c,a]]

On each iteration: Remove first candidate path,

extend it and add extensions at end of list

% solve(Start, Solution):

% Solution is a path (in reverse order) from Start to a goal

solve(Start, Solution) :-

 breadthfirst([[Start]], Solution).

% breadthfirst([Path1, Path2, ...], Solution):

% Solution is an extension to a goal of one of paths

breadthfirst([[Node | Path] | _], [Node | Path]) :-

 goal(Node).

breadthfirst([Path | Paths], Solution) :-

 extend(Path, NewPaths),

 conc(Paths, NewPaths, Paths1),

 breadthfirst(Paths1, Solution).

extend([Node | Path], NewPaths) :-

 bagof([NewNode, Node | Path],

 (s(Node, NewNode), not member(NewNode, [Node | Path])),

 NewPaths),

 !.

extend(Path, []). % bagof failed: Node has no successor

Breadth-first with difference lists

 Previous program adds newly generated paths at end

of all candidate paths:

 conc(Paths, NewPaths, Paths1)

 This is unnecessarily inefficient: conc scans whole list

Paths before appending NewPaths

 Better: represent Paths as difference list Paths-Z

Adding new paths

 Paths Z Z1

 NewPaths

Current candidate paths: Paths - Z

Updated candidate paths: Paths - Z1

Where: conc(NewPaths, Z1, Z)

Breadth-first with difference lists

solve(Start, Solution) :-

 breadthfirst([[Start] | Z] - Z, Solution).

breadthfirst([[Node | Path] | _] - _, [Node | Path]) :-

 goal(Node).

breadthfirst([Path | Paths] - Z, Solution) :-

 extend(Path, NewPaths),

 conc(NewPaths, Z1, Z), % Add NewPaths at end

 Paths \== Z1, % Set of candidates not empty

 breadthfirst(Paths - Z1, Solution).

Space effectiveness of

breadth-first in Prolog

Representation with list of lists appears redundant:

all paths share initial parts

However, surprisingly, Prolog internally constructs

a tree!

 a

 b c

d e

P1 = [a]

P2 = [b | P1] = [b,a]

P3 = [c | P1] = [c,a]

P4 = [d | P2] = [d,b,a]

P5 = [e | P2] = [e,b,a]

Turning breadth-first into depth-first

Breadth-first search

On each iteration: Remove first candidate path,

extend it and add extensions at end of list

Modification to obtain depth-first search:

On each iteration: Remove first candidate path,

extend it and add extensions at beginning of list

Complexity of basic search methods

 For simpler analysis consider state-space as a tree

 Uniform branching b

 Solution at depth d

n

Number of nodes at level n : bn

Time and space complexity orders

 Shortest

 solution

 Time Space guaranteed

Breadth-first b
d

b
d
 yes

Depth-first b
dmax

 dmax no

Iterative deepening b
d
 d yes

Time and space complexity

 Breadth-first and iterative deepening guarantee

shortest solution

 Breadth-first: high space complexity

 Depth-first: low space complexity, but may search

well below solution depth

 Iterative deepening: best performance in terms of

orders of complexity

Time complexity of

iterative deepening

 Repeatedly re-generates upper levels nodes

 Start node (level 1): d times

 Level 2: (d -1) times

 Level 3: (d -2) times, ...

 Notice: Most work done at last level d , typically more

than at all previous levels

Overheads of iterative deepening due to

re-generation of nodes

nodes generated by iter. deep
nodes generated by breadth-first



b
b 1

 Example: binary tree, d =3, #nodes = 15

 Breadth-first generates 15 nodes

 Iter. deepening: 26 nodes

 Relative overheads due to re-generation: 26/15

 Generally:

Backward search

 Search from goal to start

 Can be realised by re-defining successor relation as:

 new_s(X, Y) :- s(Y, X).

 New goal condition satisfied by start node

 Only applicable if original goal node(s) known

 Under what circumstances is backward search

 preferred to forward search?

 Depends on branching in forward/backward direction

Bidirectional search

 Search progresses from both start and goal

 Standard search techniques can be used on re-

defined state space

 Problem situations defined as pairs of form:

 StartNode - GoalNode

Re-defining state space for bidirectional

search

new_s(S - E, S1 - E1) :-

 s(S, S1), % One step forward

 s(E1, E). % One step backward

new_goal(S - S). % Both ends coincide

new_goal(S - E) :-

 s(S, E). % Ends sufficiently close

S S1 E1 E

Original space:

Complexity of bidirectional search

Consider the case: forward and backward branching

both b, uniform

d

d/2 d/2

Time ~ bd/2 + bd/2 < bd

Searching graphs

Do our techniques work on graphs, not just trees?

Graph unfolds into a tree, parts of graph may repeat

many times

Techniques work, but may become very inefficient

Better: add check for repeated nodes

