PROBLEM SOLVING AS SEARCH

lvan Bratko
Ljubljana University

These slides are meant to be used with a Prolog system to demonstrate
the examples, and the book: I. Bratko, Prolog Programming for Artificial

Intelligence, 4th edn., Pearson Education 2011. The slides are not self-

sufficient.

PROBLEM SOLVING

Problems as generally represented as graphs

Problem solving corresponds to searching a graph

Two representations

(1) State space (usual graph)
(2) AND/OR graph

A problem from blocks world

Find a sequence of robot moves to re-arrange blocks

Blocks world state space

State Space

State space = Directed graph
Nodes ~ Problem situations
Arcs ~ Actions, legal moves

Problem = (State space, Start, Goal condition)
Note: several nodes may satisfy goal condition

Solving a problem ~ Finding a path
Problem solving ~ Graph search
Problem solution ~ Path from start to a goal node

Examples of representing problems in
state space

Blocks world planning
8-puzzle, 15-puzzle

8 queens

Travelling salesman
Set covering

How can these problems be represented by graphs?
Propose corresponding state spaces

8-puzzle

|3 1 3
81214 > 8 4
71613 ’ 7 5

113

8124

716]|3
1 3 I 4
81214 S
71615 7 5

113 11213 134] 4
214 8 4 B12]5§ 8 2
6|5 7|65 716 7 3

State spaces for optimisation problems

Optimisation: minimise cost of solution
In blocks world:

actions may have different costs
(blocks may have different weights, ...)

Assign costs to arcs

Cost of solution = cost of solution path

More complex examples

Making a time table
Production scheduling
Grammatical parsing
Interpretation of sensory data
Modelling from measured data

Finding scientific theories that account for
experimental data

SEARCH METHODS

Uninformed techniques:
systematically search complete graph, unguided

Informed methods:

Use problem specific information to guide search in
promising directions

What is “promising™?
Domain specific knowledge
Heuristics

Basic search methods - uninformed

Depth-first search
Breadth-first search
Iterative deepening

Informed, heuristic search

Best-first search

Hill climbing, steepest descent

Algorithm A*

Beam search

Algorithm IDA* (Iterative Deepening A*)
Algorithm RBFS (Recursive Best First Search)

Direction of search

Forward search: from start to goal
Backward search: from goal to start
Bidirectional search

In expert systems:

Forward chaining
Backward chaining

Depth-first search

Representing state space in Prolog

Successor relation between nodes:
s(ParentNode, ChildNode)

s/2 Is non-deterministic; a node may have many
children that are generated through backtracking

For large, realistic spaces, s-relation cannot be stated
explicitly for all the nodes; rather it is stated by rules
that generate successor nodes

A depth-first program

% solve(StartNode, Path) eo.N
solve(N, [N]) :- / \S
goal(N). @ N1
solve(N, [N | Path]) :- Path
s(N, N1),

solve(N1, Path). goal node

Properties of depth-first search program

Is not guaranteed to find shortest solution first
Susceptible to infinite loops (should check for cycles)

Has low space complexity: only proportional to depth
of search

Only requires memory to store the current path from
start to the current node

When moving to alternative path, previously
searched paths can be forgotten

Depth-first search, problem of looping

lterative deepening search

Dept-limited search may miss a solution if depth-limit
IS set too low

This may be problematic if solution length not known
In advance

ldea: start with small MaxDepth and
Increase MaxDepth until solution found

An Iterative deepening program

% path(N1, N2, Path):
% generate paths from N1 to N2 of increasing length

path(Node, Node, [Node]).

path(First, Last, [Last | Path]) :-
path(First, OneBut Last, Path),
s(OneButLast, Last),
not member(Last, Path). % Avoid cycle

FW‘ -©

OneButLast Last

How can you see that path/3 generates
paths of increasing length?

FW. -©

OneButLast Last

1. clause: generate path of zero length, from First to itself

2. clause: first generate a path Path (shortest first!), then
generate all possible one step extensions of Path

Use path/3 for iterative deepening

% Find path from start node to a goal node,
% try shortest paths first

depth_first_iterative _deepening(Start, Path) :-
path(Start, Node, Path), % Generate paths from Start
goal(Node). % Path to a goal node

Breadth-first search

 Guaranteed to find shortest solution first
» Best-first finds solution a-c-f
* Depth-first finds a-b-e-j

A breadth-first search program

Breadth-first search completes one level before
moving on to next level

Has to keep in memory all the competing paths that
aspire to be extended to a goal node

A possible representation of candidate paths: list of
lists

Easiest to store paths in reverse order;

then, to extend a path, add a node as new head
(easier than adding a node at end of list)

Candidate paths as list of lists

[[d,b,a], [e,b,a], [f,c,a], [g,c,a]]

On each iteration: Remove first candidate path,
extend it and add extensions at end of list

% solve(Start, Solution):
% Solution is a path (in reverse order) from Start to a goal

solve(Start, Solution) :-
breadthfirst([[Start]], Solution).

% breadthfirst([Pathl, Path2, ...], Solution):
% Solution is an extension to a goal of one of paths

breadthfirst([[Node | Path] | _], [Node | Path]) :-
goal(Node).

breadthfirst([Path | Paths], Solution) :-
extend(Path, NewPaths),
conc(Paths, NewPaths, Paths1l),
breadthfirst(Pathsl1, Solution).

extend([Node | Path], NewPaths) :-
bagof([NewNode, Node | Path],
(s(Node, NewNode), not member(NewNode, [Node | Path])),
NewPaths),

extend(Path, []). % bagof failed: Node has no successor

Breadth-first with difference lists

Previous program adds newly generated paths at end
of all candidate paths:

conc(Paths, NewPaths, Pathsl)

This is unnecessarily inefficient: conc scans whole list
Paths before appending NewPaths

Better: represent Paths as difference list Paths-Z

Adding new paths

‘ Paths ‘ Z ‘ Z1

& N
N 7

NewPaths

Current candidate paths: Paths - Z
Updated candidate paths: Paths - Z1
Where: conc(NewPaths, Z1, Z)

Breadth-first with difference lists

solve(Start, Solution) :-
breadthfirst([[Start] | Z] - Z, Solution).

breadthfirst([[Node | Path] |]- _, [Node | Path]) :-
goal(Node).

breadthfirst([Path | Paths] - Z, Solution) :-
extend(Path, NewPaths),
conc(NewPaths, Z1, 2), % Add NewPaths at end
Paths \== 71, % Set of candidates not empty
breadthfirst(Paths - Z1, Solution).

Space effectiveness of
breadth-first in Prolog

Representation with list of lists appears redundant:
all paths share Initial parts

However, surprisingly, Prolog internally constructs
a treel!

a Pl = [a]
/ \ P2 = [b|P1] =[b,a]
b C P3 = [c| P1] =]c,q]
/N P4 = [d | P2] =[d,b,a]
d e P5 = [e | P2] =[e,b,a]

Turning breadth-first into depth-first

Breadth-first search
On each iteration: Remove first candidate path,
extend it and add extensions at end of list

Modification to obtain depth-first search:
On each iteration: Remove first candidate path,
extend it and add extensions at beginning of list

Complexity of basic search methods

For simpler analysis consider state-space as a tree
Uniform branching b
Solution at depth d

Number of nodes at level n: 57

Time and space complexity orders

Shortest
solution
Time Space guaranteed
. d d
Breadth-first b b yes
Depth-first b dmax no
Iterative deepening b° d yes

Time and space complexity

Breadth-first and iterative deepening guarantee
shortest solution

Breadth-first: high space complexity

Depth-first: low space complexity, but may search
well below solution depth

Iterative deepening: best performance in terms of
orders of complexity

Time complexity of
iterative deepening

Repeatedly re-generates upper levels nodes
Start node (level 1): d times

Level 2: (d -1) times

Level 3: (d -2) times, ...

Notice: Most work done at last level d , typically more
than at all previous levels

Overheads of iterative deepening due to
re-generation of nodes

Example: binary tree, d =3, #nodes = 15

Breadth-first generates 15 nodes
Iter. deepening: 26 nodes
Relative overheads due to re-generation: 26/15

Generally:

hodes generated by iter. deep _ b
nodes generated by breadth-first 5-1

Backward search

Search from goal to start
Can be realised by re-defining successor relation as:
new_s(X,Y) - s(Y, X).

New goal condition satisfied by start node

Only applicable if original goal node(s) known

Under what circumstances is backward search
preferred to forward search?

Depends on branching in forward/backward direction

Bidirectional search

Search progresses from both start and goal

Standard search technigues can be used on re-
defined state space

Problem situations defined as pairs of form:
StartNode - GoalNode

Re-defining state space for bidirectional
search

Original space:

new s(S-E,S1-E1) :-
s(S, Sl), % One step forward
s(E1, E). % One step backward

new goal(S-S). % Both ends coincide

new goal(S-E) :-
s(S, E). % Ends sufficiently close

Complexity of bidirectional search

Consider the case: forward and backward branching
both b, uniform

® X I T O ®
‘/' O et \‘
\‘/ Q= - \‘/
. e
O—_. O
d
d/2 d/2

Searching graphs

Do our technigues work on graphs, not just trees?

(b) (@)
(b ()
@) () ©

Graph unfolds into a tree, parts of graph may repeat o
many times

Techniques work, but may become very inefficient

Better: add check for repeated nodes

