
Evolutionary algorithm for n-queens problem

1 Evolutionary algorithm
P ← P0

evaluate(P )
gen← 0
best← min(evaluate(P ))
while gen < genmax AND evaluate(P (best)) > ffmax do
Pn ← selection(P )
mutation(Pn)
evaluate(P )
best← min(evaluate(P ))
k ← k + 1

end while
return P(best)

2 Algorithm description
• P is a current population - an array of pop individuals. Each individual represents a

board with the n-queens. The individual is a n-length vector.

• P0 is an initial population that is pop boards with n-queens, which positions are random.

• evaluate(P ) calculate a fitness function for n-queen problem that returns the number
of attacks. Perform for every individual in the population. (the same as E() in SA).

• best - index of the best individual in P.

• Pn is a new population after selection

• selection(P ) perform tournament selection:
while i < pop do
i1 ← random(pop)
i2 ← random(pop)
if evaluate(P (i1)) ≤ evaluate(P (i2)) then
Pn(i)← P (i1)

else
Pn(i)← P (i2)

1



end if
end while

• ffmax is the value of utility function for solution. For n-queens problem the number of
attacks i.e. 0.

• genmax - maxim number of steps e.g. 1000. (k_max in SA)

• function mutation(P ) perform random changes in individuals. Mutation randomly
switch two queens. (mutate = neighbour procedure in SA).

while i < pop do
if random() ≤ pm then
mutate(P (i))

end if
end while

pm - mutation probability — parameter controlling the number of mutations.

random() - no params returns real value from 0 to 1.

2


