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History of artificial neural networks

1943: McCulloch i Pitts – the first model of artificial neuron.

1949: Hebb – a mechanism of the information remembering by
biological neurons.

1958: Rosenblatt – Perceptron neural network.

1960: Widrow – MADALINE neural network.

1968: Minsky i Papert – critical voice.
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Biological neuron

Neuron

Neuron is the basic building block of the nervous system. It is a cell,
which is able to receive and transmit electrical signals.

Działanie

If the value of the electric signal put to the neuron exceeds a certain
threshold, the neuron is stimulated. Stimulated neuron is discharged and
the resulting signal is sent to other neurons. As long as the input signals
exceeds a certain threshold, discharge volume remains the same.
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Biological neuron

The neuron consists of the following elements.

1 Many dendrites, which take impulses from other neurons.

2 The cell body with the nucleus.

3 One axon, which transmits the signal to next cells.

4 Synapses – neurotransmitters which weaken or strengthen the
output signal.
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Artificial neuron

y(x) = f (
n∑

i=1

wixi + b) = f (wTx + b)
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Activation functions – unipolar threshold (step) function

f (φ) =

{
1, for φ > 0
0, for φ ≤ 0
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Activation functions – bipolar threshold (step) function

f (φ) =

{
1, for φ > 0
−1, for φ ≤ 0
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Activation functions – sigmoid (logistic) function

f (φ) =
1

1 + e−βφ
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Activation functions – hyperbolic tangent function

f (φ) = tanh(φ) =
eβφ − e−βφ

eβφ + e−βφ
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Activation functions – linear function

f (φ) = φ

Marcin Pluciński Artificial neural networks and their applications 10 / 252



Activation functions – piecewise-linear function

f (φ) =

 −1, for φ < −1
φ, for −1 ≤ φ < 1
1, for φ ≥ 1
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Types of neural networks

Multilayer, feedforward neural network.
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Types of neural networks

Recurrent neural network.
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Types of neural networks

Cellular neural network.
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Applications

Neural networks can perform the following tasks:

1 classification,

2 approximation (modelling),

3 prediction,

4 signals filtration,

5 data analysis (e.g. clustering, PCA),

6 optimisation,

7 other (e.g. data/image compression).
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Perceptron

General information

A single layer of neurons

Unipolar of bipolar threshold activation function

Supervised learning

Learning algorithm – delta rule

Application – classification
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Perceptron
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Perceptron

y(x) = f (
n∑

i=0

wixi) = f (wTx)
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Perceptron
A single neuron separates the input space into two parts. Its
basic task is a binary classification.
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Perceptron

Binary classification

The aim of the classification is assigning an object to a class
at the basis of its attributes values (input data). In the binary
classification case, there are possible two classes at the output.

Let’s consider a training set (a set of pairs):

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} are given output data.
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Perceptron

Hyper-plane equation in the space Rn:

w0 + w1 · x1 + w2 · x2 + . . .+ wn · xn = 0

wTx = 0

Learning of the neuron is based on the selection of the weights
in such a way that:

wTx > 0 is satisfied for samples with given output d
equal 1,

wTx ≤ 0 is satisfied for samples with given output d
equal 0 or −1.
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Perceptron

For example, for the neuron with two inputs:

φ = w0 + w1 · x1 + w2 · x2

separating line is described by the equation:

w0 + w1 · x1 + w2 · x2 = 0

or:
x2 = −w1

w2
x1 −

w0

w2
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Learning of the network

Purpose of learning

The network is learnt on the base of learning data.

Learning data – represent information about the desired
network behavior.

Purpose of learning – a selection of weights to realise the
desired task.
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Learning methods

Supervised learning

Learning data consist of pairs:

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} or di ∈ R are connected with them, given output
data.

Unsupervised learning

Learning data has a form of the set:

(xi), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data.
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Delta rule

After presentation of the sample number p, we modify the
weights according to the formula:

w(k + 1) = w(k) + η · δp · xp

where:

δp = dp − yp =

 −1
0
1

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step
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Learning algorithm

1 Initiation of weights

2 n = 1 (set the counter)

3 while n > 0 (check if all samples are classified correctly)

n = 0 (reset the counter)

Mix samples randomly in the training set
For successive samples:

Calculate output yp of the neuron for sample p
Calculate error δp = dp − yp
if δp! = 0

w(k + 1) = w(k) + η · δp · xp
n + + (increment the counter)
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Features of the learning algorithm

It always finishes its operation with a success if the set
of patterns is linearly separable

It doesn’t stop when the patterns are not linearly
separable.

The margin of separation is always greater than or equal
to zero.

In practice, we want the margin of separation to be the
greatest.
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Example
We have a neuron with a unipolar threshold (step) activation function.

Using the delta rule, choose the weights of the neuron in order to
properly classify learning samples shown in the table below.

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Rate of learning: η = 0.2.
Initial weights: w(0) = [w0 w1 w2]T = [0.1 0.5 0.8]T .
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Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0
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Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w(0) = [w0 w1 w2]T = [0.1 0.5 0.8]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1−

w0

w2
= −

5

8
x1−

1

8
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Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.1 0.1 0.6]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1−

w0

w2
= −

1

6
x1 +

1

6
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Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.3−0.5 0.4]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1 −

w0

w2
=

5

4
x1 +

3

4
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Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.1−0.3 0.8]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1 −

w0

w2
=

3

8
x1 +

1

8
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Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.3−0.7 0.6]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1 −

w0

w2
=

7

6
x1 +

3

6
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Example – learning with different η value

η = 1 η = 0.05
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Learning with a given separation margin γ
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Learning with a given separation margin γ
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Learning algorithm with a given separation margin

1 Initiation of weights

2 n = 1 (set the counter)

3 while n > 0 (check if all samples are classified correctly)

n = 0 (reset the counter)

Mix samples randomly in the training set
For successive samples:

Calculate output yp of the neuron for sample p
Calculate error δp = dp − yp
Calculate a distance between sample and separation
line lp =

φp

||w ||
if δp! = 0

w(k + 1) = w(k) + η · δp · xp
n + + (increment the counter)

elseif abs(lp) < γmin − tol (tol – small value, e.g. 0.01)

w(k + 1) = w(k) + η · (sgn(lp) · γmin − lp) · xp
n + + (increment the counter)
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Example – learning with a given separation margin γ

Learning without given separation
margin

γmin = 0.6
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Example – multi-value classification

Samples belong to 4
classes:

2.04 5.54 A
1.92 4.58 A

...
−3.67 3.04 B
−3.02 3.05 B

...
3.08 −5.95 C
3.34 −5.94 C

...
−4.13 −2.95 D
−4.44 −2.94 D

...
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Example – multi-value classification

We create one layer network with 4 neurons.
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Example – multi-value classification

We can code the given
output in the following
way:

A → 1000
B → 0100
C → 0010
D → 0001

Data after coding:

x1 x2 Class d1 d2 d3 d4

2.04 5.54 A 1 0 0 0
1.92 4.58 A 1 0 0 0

...
−3.67 3.04 B 0 1 0 0
−3.02 3.05 B 0 1 0 0

...
3.08 −5.95 C 0 0 1 0
3.34 −5.94 C 0 0 1 0

...
−4.13 −2.95 D 0 0 0 1
−4.44 −2.94 D 0 0 0 1

...
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Example – multi-value classification

Each neuron can be learnt separately with given output: d1,
d2, d3 and d4. After learning (with the given separation
margin):
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Example – multi-value classification

Is it possible to create the
network with only 2
outputs and coding below?

A → 00
B → 10
C → 11
D → 01
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ADALINE neuron (Adaptive Linear Neuron)

y(x) = φ =
n∑

i=0

wixi = wTx
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Delta rule
After presentation of the sample number p, we modify the weights
according to the formula:

w(k + 1) = w(k) + η · δp · xp

where:
δp = dp − yp

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Cumulative correction
After presentation of all samples from the learning data set we can calculate:

∆w =
1

L
η

L∑
p=1

δp · xp
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Learning algorithm

1 Initiation of weights

2 Q = Real max value (set large value of the error in the beginning)

3 while Q > Qmin (check if the actual error is smaller than the given error)

Q = 0 (reset the error)

Mix samples randomly in the training set
For successive samples:

Calculate output yp of the neuron for sample p
Calculate error δp = dp − yp
Calculate new weights w(k + 1) = w(k) + η · δp · xp
Q = Q + δ2

p

Calculate mean square error Q = Q/L (L – number of

samples)
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Neuron with a nonlinear activation
function

y(x) = f (
n∑

i=0

wixi) = f (wTx)
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Generalized delta rule

After presentation of the sample number p, we modify the weights
according to the formula:

w(k + 1) = w(k) + η · δp · f ′(φp) · xp

where:
δp = dp − yp

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Generalized error

δ′p = δp · f ′(φp)
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Derivatives of activation functions

Derivative of the sigmoid activation function:

f (φ) =
1

1 + e−βφ

can be calculated with formula:

f ′(φ) = β · f (φ) · (1− f (φ))

Derivative of the hyperbolic tangent activation function:

f (φ) = tanh(φ) =
eβφ − e−βφ

eβφ + e−βφ

can be calculated with formula:

f ′(φ) = β · (1− f 2(φ))
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Generalized delta rule

The algorithm is convergent to nearest local minimum of
the error function Q(w).

The algorithm does not guarantee finding of the global
minimum!

There is necessity of learning with different, random
initial weights.
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Momentum component

After presentation of the sample number p, we modify the weights
according to the formula:

∆w(k + 1) = η · δp · f ′(φp) · xp + α ·∆w(k)

w(k + 1) = w(k) + ∆w(k + 1)

where:
α – momentum coefficient,
k – learning step.
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Momentum component
Momentum component:

accelerates the process of the network learning,

allows the use of larger values of the rate of learning η,

allows to skip local minima of the error,

eliminates oscillations of weights during learning.
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Momentum component

An exemplary process of learning:

a) small η coefficient,

b) large η coefficient,

c) large η coefficient with momentum component.
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Multilayer, feedforward neural network
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Choice of the network structure
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Choice of the network structure
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Learning data
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Learning data
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Approximation with a polynomial of the 1-st order

Learning data error (blue) = 44.30;
Testing data error (red) = 44.37
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Approximation with a polynomial of the 3-rd order

Learning data error (blue) = 14.69;
Testing data error (red) = 17.96
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Approximation with a polynomial of the 5-th order

Learning data error (blue) = 12.37;
Testing data error (red) = 16.61
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Approximation with a polynomial of the 7-th order

Learning data error (blue) = 11.99;
Testing data error (red) = 16.54
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Approximation with a polynomial of the 9-th order

Learning data error (blue) = 10.21;
Testing data error (red) = 20.01
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Approximation with a polynomial of the 11-th order

Learning data error (blue) = 10.19;
Testing data error (red) = 23.72
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Approximation with a polynomial of the 13-th order

Learning data error (blue) = 5.02;
Testing data error (red) = 54.61
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Overfitting and underfitting of the network

Learning data error (red) and testing data error (green) as a function of
polynomial order.
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Overfitting and underfitting of the network

The network is underfitted (hidden layer with 1 neuron).
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Overfitting and underfitting of the network

The network is overfitted (hidden layer with 10 neurons).
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Overfitting and underfitting of the network

The network is learnt correctly (hidden layer with 3 neurons).
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Overfitting and underfitting of the network

Correctly learnt network (left) and overfitted network (right).
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Overfitting and underfitting of the network

Correctly learnt network (left) and underfitted network (right).
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Overfitting and underfitting of the network
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Multilayer, feedforward neural network
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Multilayer, feedforward neural network

We can consider a N-layer network with the same activation functions
f (φ). Let’s introduce the following notation:

n = 0, . . . ,N – number of the layer

p = 1, . . . , L – number of the sample (L – no of samples in the
learning set)

i , j = 1, . . . , tn – no of the neuron on the layer n (tn – no of
neurons on the layer n)
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Multilayer, feedforward neural network

Output of the neuron j on the layer no n can be calculated as:

vnp
j = f (φnpj ) = f

(
tn−1∑
i=0

wn
ji · v

(n−1)p
i

)
= f

(
wnT

j · v(n−1)p
)

(1)

where: wn
ji – weight on input no i .

yp
j = vNp

j xpi = v0p
i

We can calculate generalized error for the output layer:

δ′Npj = f ′(φNp
j ) · δpj = f ′(φNp

j ) · (dp
j − yp

j ) (2)
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Multilayer, feedforward neural network

The error is backpropagated onto hidden layers:

δ′npj = f ′(φnpj )

tn+1∑
k=1

δ′
(n+1)p
k · w (n+1)

kj (3)

After calculating of generalized errors for all network neurons, we can
calculate weight corrections with the generalized delta rule:

∆wnp
ji = η · δ′npj · v

(n−1)p
i (4)

∆wnp
j = η · δ′npj · v

(n−1)p
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Backpropagation error algorithm

For the sample no p:

1 Put the vector xp into the network input.

2 Calculate the output vnp
j for each neuron on successive network

layers, from the first hidden layer to the output (formula 1).

3 Calculate generalized errors for the output layer (formula 2).

4 Backpropagate output generalized error onto hidden layers neurons
(formula 3).

5 Calculate correction of weights (formula 4) and modify network
weights.
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Backpropagation error algorithm

For the sample no p:

1 Put the vector xp into the network input.

2 Calculate the output v
np
j for each neuron on successive network layers, from the first hidden layer to the

output (formula 1).

3 Calculate generalized errors for the output layer (formula 2).

4 Backpropagate output generalized error onto hidden layers neurons (formula 3).

5 Calculate correction of weights (formula 4) and modify network weights.

3A: After step no 3, calculate the sum of squared errors
Qp =

∑N
j=1(δNpj )2 and add it to the total error of learning data Q.

3B: If this was the last sample in the set, we must check whether the
error Q is smaller than the given threshold. If so, abort learning.
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Network of linear neurons – example

x1 x2 d
1 2 1
0 1 2
2 0 3
...

...
...

w11(0) =

 0.1
−0.1

0.1

 w12(0) =

 0.2
−0.2

0.2



w21(0) =

 −0.1
0.2
0.3

 w22(0) =

 0.1
0.1
0.2

 w23(0) =

 −0.2
0.1
0.2

 w31(0) =


−0.1

0.3
−0.2

0.1
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RBF Neural Networks

RBF – Radial Basis Function

Neurons in the hidden layer implements the function changing its value
radially around a certain point c known as the center of the neuron.

The RBF function has the general form:

f (x) = φ(||x− c||)

where: ||x− c|| – the distance between a sample x and the center c.
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RBF Neural Networks

One of the most popular RBF functions is the Gauss function:

φ(x) = exp

(
−||x− c||2

2σ2

)
where:

||x− c|| =

√√√√ n∑
i=1

(xi − ci )2 , x =

 x1
...
xn

 , c =

 c1
...
cn


The parameter σ defines the spread of the RBF function.
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Gauss function

φ(x) = exp

(
−||x− c||2

2σ2

)

c = 5, σ = 1 c = [4 6]T , σ = 1
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Gauss function

φ(x) = exp

(
−||x− c||2

2σ2

)
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Structure of the RBF network
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Performance of the RBF network

In classification tasks, the RBF neuron divides the input space into 2
parts with a boundary which has the shape of a circle (for 2 inputs), a
sphere (for 3 inputs) or hyper-sphere.
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Learning of the RBF network

Learning of the RBF network is supervised. Before learning, the input
part of data samples should be normalized.

1 Choose the number K of RBF neurons on the hidden layer.

2 Determine centres ci and spreads σi of RBF neurons.

3 Determine weights wj of output layer neurons.
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Determination of centres ci and spreads σi

In the simplest case, centres of RBF neurons can be selected randomly
(uniform distribution of centres in the input space is very advantageous).

The spread can be the same for all neurons and equal:

σ =
d√
2K

where: d – the maximum distance between the centres.

Another way is to take σi equal to mean standard deviation of the
distance of samples from the centre they belongs to.

σi can be also equal to the distance between the centre ci from
the closest neighbour centre.

The best result is obtained by dividing the data into learning and
validating parts and the application of the validation.
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Determination of centres ci – clusterization

K-means algorithm:

1 Generate randomly K points in the input space (uniform
distribution of points in the input space is very advantageous).
These points are the initial cluster centres ci .

2 Assign each sample to the nearest center ci .

3 Calculate new cluster centres:

cnewi =
1
Ni

Ni∑
j=1

x(i)
j

where: x(i)
j – sample no j which belongs to cluster i , Ni – no of

samples that belongs to cluster i .

4 Check the displacement of centres:

∆i = ||cnewi − ci ||

5 If max ∆i > ε go back to point 2, otherwise the algorithm is
finished.
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K-means algorithm – example
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K-means algorithm – example
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K-means algorithm – example
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K-means algorithm – example
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K-means algorithm – example
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Determination of output layer weights

1 We have determined centres and spreads of RBF neurons, so
output layer weights can be learnt on the base of the delta rule.

2 Weights can be also calculated in such a way that the mean
square error of the model is minimised.
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Calculation of weights
For each sample p we can create the equation:

w0 + w1 · φ(||x(p) − c1||) + . . .+ wK · φ(||x(p) − cK ||) = d (p)

Assuming that we have L samples, we obtain the system of L equations,
with K + 1 unknown weights wi .

This system can be written as:

G ·w = d

where:

G =



1 φ(||x(1) − c1||) . . . φ(||x(1) − cK ||)
...
1 φ(||x(p) − c1||) . . . φ(||x(p) − cK ||)
...
1 φ(||x(L) − c1||) . . . φ(||x(L) − cK ||)


w =


w0
w1
...

wK

 d =



d (1)

...
d (p)

...
d (L)
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Calculation of weights

The solution which minimises the mean square error of the
model can be calculated as:

w = G+ · d = (GT · G)−1 · GT · d
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Determination of the RBF neurons number

1 Divide data into learning and validation parts.

2 Create the network with 1 RBF neuron, next with 2 neurons and
so on.

3 Observe the error of the learning and validating data set.

4 If the error of the validating set begins to grow, stop the addition
of neurons.
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newrb method

1 Assume the spread of RBF neurons (the same for all).

2 Assume the minimum mean square error of the model.

3 Create the network with 1 RBF neuron.

4 Calculate the error for each sample.

5 Calculate the mean square error (MSE) of the model.

6 If MSE is greater than assumed minimum, add next RBF neuron
and locate its center in the sample which cause the greatest error.
Calculate output layer weights and go back to point 4.
Otherwise stop learning.
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newrb method – example: σ = 1
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newrb method – example: σ = 1
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newrb method – example: σ = 1
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newrb method – example: σ = 1

Marcin Pluciński Artificial neural networks and their applications 105 / 252



newrb method – example: σ = 0.5
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newrb method – example: σ = 0.5
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newrb method – example: σ = 0.5
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newrb method – example: σ = 0.5

Characteristic for the network with 9 RBF neurons.
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newrb method – example: σ = 0.5
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newrbe method
1 Assume the spread of RBF neurons (the same for all).

2 Assume the number of RBF neurons equal to the number of
samples. Locate centres of neurons in learning samples.

3 Calculate output layer weights.

There is only one (!) parameter to tune in the network. The rest
is defined by data (centres) or calculated (weights).

The network can be easily overfitted. For very small σ values the
learning data error decreases to almost zero.

Value of σ must be determined with the application of validation.
If the amount of data is large, we can divide it into training and
validating parts. As the σ value we must take the value that
minimises validating data error.

If the amount of data is small – we must apply crossvalidation.
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newrbe method– example: σ = 0.1
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newrbe method– example: σ = 0.5
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newrbe method– example: σ = 1
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newrbe method– example: σ = 10
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newrbe method– example: σ = 100
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newrbe method – crossvalidation error

Crossvalidation error determined on the base of ‘leave one out’ method
for different σ values.
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Learning methods

Supervised learning

Learning data consist of pairs:

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} or di ∈ R are connected with them, given output
data.

Unsupervised learning

Learning data has a form of the set:

(xi), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data.
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Unsupervised learning

The given output is not required in samples.

The network should ‘discover’ (without external help) patterns,
features, interdependencies, arrangement of the input data, and
then provide this information in a properly encoded form in the
output.

Redundancy of the data is required for the effective unsupervised
learning.

During learning, the network usually tries to divide the learning set
into classes, according to certain common features of samples.
The network should be able to identify such features in any
presented input vector.
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Unsupervised learning – tasks

The kind of task salved by the network depends on the network structure
and its learning method.

Similarity determination – realised by the network with a single
output neuron whose value shows how much an input sample is
similar to the pattern memorised during the learning process.

Classification – the network has a number of output neurons equal
to the amount of recognised classes. The input sample is assigned
to a specific class. The task of the learning process is to divide
samples similar to each other into classes and to assign each class
to the one output neuron.

The search for the archetyp – the network works in a similar way
to the classification case, but on the output we get a pattern
typical to the class.
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Unsupervised learning – tasks

The kind of task salved by the network depends on the network structure
and its learning method.

Coding – the output vector is the coded version of the pattern
typical to the class.

Principal component analysis (PCA) – the network has a certain
number of output neurons, and each neuron specifies the similarity
of the input sample with respect to the principal components
(most important features).

Creating maps of features – output layer neurons are geometrically
arranged (e.g. in the form of a 2-dimensional array). During the
presentation of the input sample only 1 output is activated. The
idea of its operation assumes that similar input samples generate
the activity of geometrically close neurons. So, the output layer is
a kind of the topographic map of the input data features.
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Hebb rule

One of the first rules of unsupervised neuron learning was described by
Donald Hebb. This rule was based on the phenomenon of the formation
of conditioned reflexes which are acquired by humans and animals.

If a neuron A is cyclically stimulated by a neuron B, then it becomes
more sensitive to stimulation.

If we denote by φA and φB the states of activity of the neurons A and B,
and by wAB – weight of its connection, then the above rule can be
described in the form:

wAB(k + 1) = wAB(k) + η · φA · φB
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Data normalisation

Normalisation

Scaling of the each input in such a way that it takes the value from the
same and assumed interval [l , u]. Most commonly, the normalisation
scales values to the range [0, 1] or [−1, 1].

xnorm = (x − xmin) · u − l

xmax − xmin
+ l

where:

x – original value,

xnorm – value after normalisation,

xmin, xmax – minimum and maximum value of the data.
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Data normalisation

% normalisation of the vector x
% new_min, new_max - new range of the vector values (by default [0,1])
% x_norm - vector after normalisation
% min_x, max_x - minimum and maximum value in the original vector

function [x_norm, min_x, max_x] = normalisation(x, new_min, new_max)

if nargin < 2
new_min = 0;
new_max = 1;

end
if nargout > 1
min_x = min(x);
max_x = max(x);

end

x_norm = (x - min(x))*(new_max-new_min)/(max(x)-min(x)) + new_min;
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>> x = 0:10
x =

0 1 2 3 4 5 6 7 8 9 10

>> x1 = normalisation(x)
x1 =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

>> x2 = normalisation(x,-10,10)
x2 =
-10 -8 -6 -4 -2 0 2 4 6 8 10

>> [x2, x_low, x_high] = normalisation(x,-100,100)
x2 =
-100 -80 -60 -40 -20 0 20 40 60 80 100
x_low =

0
x_high =
10
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Normalisation of the Z axis

In unsupervised learning, a frequent requirement is the same length of
training vectors.

1 In the first step, all inputs are scaled to the interval [−1, 1].

2 In the second step, we add an additional variable whose value is a
function of the real input values. This value is calculated in such a
way that after normalisation, the vector length is equal to 1.

We calculate:

x̂i = f · xi , i = 1 . . . n, f =
1√
n

x̂n+1 = f ·
√
n − d2, d =

√√√√ n∑
i=1

x2
i
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Normalisation of the Z axis – example

x1 x2

−2 −2
−1 −1
0 0
1 1
2 2
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Normalisation of the Z axis – example

x̂i = f · xi , i = 1 . . . n, f =
1√
n

x̂n+1 = f ·
√
n − d2, d =

√√√√ n∑
i=1

x2
i

x1 x2 xnorm1 xnorm2 d2 x̂1 x̂2 x̂3

−2 −2 −1 −1 2 − 1√
2

− 1√
2

0

−1 −1 −0.5 −0.5 1
2 − 1

2
√

2
− 1

2
√

2

√
3

2

0 0 0 0 0 0 0 1

1 1 0.5 0.5 1
2

1
2
√

2
1

2
√

2

√
3

2

2 2 1 1 2 1√
2

1√
2

0
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Normalisation of the Z axis – example

Marcin Pluciński Artificial neural networks and their applications 129 / 252



Grossberg rule

Let’s assume that we have only one linear neuron.

Next, let’s assume that we have only one learning sample x.

Weights will be modified according to the rule:

w(k + 1) = w(k) + η · (x−w(k))
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Grossberg rule

w(k + 1) = w(k) + η · (x−w(k))
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Grossberg rule

The neuron output is the scalar product of the input x and the vector of
weights w.

y = wT · x = |w| · |x| · cos(α)

where: α is the angle between vectors x and w.

For normalised vectors x and w, an output depends only on the angle α.

The neuron is most stimulated, when the input vector x is similar
to the weights vector w.

During learning, weights become similar to the presented sample.
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Grossberg rule

Let’s assume that we have only one linear neuron.

We have a lot of similar learning samples x.

Weights will be modified according to the rule:

w(k + 1) = w(k) + η · (x−w(k))
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Grossberg rule

During learning, weights become similar to the average presented
sample.

The neuron is most stimulated, when the input vector x is similar
to the weights vector w.

Trained neuron is able to determine the similarity of the input sample to
the memorised pattern.
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Self-Organising Networks

The network consists of a single layer of linear neurons.

The weights vector has the same size as the input vector.

Each neuron represents one class (cluster) of data.

During learning, neurons compete with each other for the
modification of weights.
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Competitive learning – WTA

Weights of the most stimulated neuron will be modified according to
Grossberg rule:

w(k + 1) = w(k) + η(k) · (x−w(k))

In this way, each neuron will be learnt only with these samples whose
values are similar to its weights, and it means that they belong to the
class it represents.

Such strategy will be called Winner Takes All (WTA) learning strategy.
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Competitive learning – WTA

In each learning step, only weights of the winner neuron wj∗ are
modified.

The winner neuron is determined as:

j∗ = arg min
j=1...m

d(x,wj)

where: d – is a measure of the distance between vectors x and wj .
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Distance measures

Scalar product:

d(x,w) = 1− x ·w = 1− ||x|| · ||w|| · cos(x,w)

Euclidean measure:

d(x,w) = ||x−w|| =

√√√√ n∑
i=1

(xi − wi )2

L1 (Manhattan) distance measure:

d(x,w) =
n∑

i=1

|xi − wi |

L∞ distance measure:

d(x,w) = max
i
|xi − wi |

Marcin Pluciński Artificial neural networks and their applications 138 / 252



Rate of learning coefficient η

Rate of learning coefficient η should be decreased during learning.

Linearly:

η(k) = ηmin + (ηmax − ηmin)
kmax − k

kmax

Exponentially:

η(k) = ηmax

(
ηmin

ηmax

) k

kmax
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Competitive learning – example

Learning data:

x1 x2

1 1
3 3
1 2

2.5 2
2 1
3 2

After normalisation:

x1 x2

−1 −1
1 1
−1 0
0.5 0
0 −1
1 0
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Competitive learning – example

Data after normalisation:

x1 x2

−1 −1
1 1
−1 0
0.5 0
0 −1
1 0

Initial weights:

w1(0) =

[
1

-0.5

]
w2(0) =

[
0

0.5

]

η = 0.2
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Competitive learning – example

Learning with constant value of η = 0.2.
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Competitive learning – example

Learning with value of η decreasing from 0.2 to 0 during learning.
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Competitive learning – example

Learning of the network with 5 neurons.
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Competitive learning – example

Learning of the network with 3 neurons.
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Competitive learning – example

Learning of the network with 5 neurons.

Marcin Pluciński Artificial neural networks and their applications 146 / 252



Competitive learning – WTM

Using Kohonen rule, we modify the weights of all neurons:

wj(k + 1) = wj(k) + η(k) · G (wj ,wj∗) · (x−w(k))

Such strategy will be called Winner Takes Most (WTM) learning strategy.

G (wj ,wj∗) – the neighbourhood function which determines the degree of
similarity between the neuron no j to the winner neuron no j∗.
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Neighbourhood functions

WTA

G (wj ,wj∗) =

{
1 for j = j∗

0 for other

Gauss neighbourhood

G (wj ,wj∗) = exp

(
−d2(wj ,wj∗)

2λ2

)

‘Mexican hat’ function

G (wj ,wj∗) =


1 for d(wj ,wj∗) = 0

sin(λ·d(wj ,wj∗ ))
λ·d(wj ,wj∗ for |d(wj ,wj∗)| ∈ (0, 2π/λ)

0 for other
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Neighbourhood functions

‘Mexican hat’ function.
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Neighbourhood functions

The width of the neighbourhood function should decrease during
learning.

Decreasing of the λ value can be realised e.g. exponentially:

λ(k) = λmax

(
λmin

λmax

) k

kmax
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WTA – WTM

Changing of the position of neurons in the WTA and WTM strategy.
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Kohonen networks

Topology

Graph structure defining arrangement and neighbourhood of neurons.

Similarity measures

Metrical – similarity defines the geometry of the input space.

Topological – similarity of vectors is defined by the network
topology.
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Topology examples

One dimensional – linear.
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Topology examples

Two dimensional – rectangular.
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Topology examples

Two dimensional – hexagonal.
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Kohonen networks

When the topology is imposed onto the network, we consider the
distance between neurons in the graph defining the topology, during
determination of the neighbourhood.

Rectangular neighbourhood

G (wj ,wj∗) =

{
1 for d(j , j∗) ≤ λ
0 for other

Gauss neighbourhood

G (wj ,wj∗) = exp

(
−d2(j , j∗)

2λ2

)
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Kohonen networks

Changing of neurons positions for the network with linear topology and
width of a rectangular neighbourhood equal to λ = 1.
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Kohonen networks

The network with topology create so-called feature maps.

After presentation of the input sample only 1 output is activated.

Similar input samples should generate activity of close (in the
graph) neurons.

The output layer is thus a kind of topographic map of input data
features.
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The quality of self-organising networks

The quality of the self-organising network can be determined by formula:

q =
L∑

p=1

||xp −wj∗ ||

where: wj∗ – weights of the winner neuron for the sample x.
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Kohonen networks – examples

Linear topology, 5 neurons.
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Kohonen networks – examples

Linear topology, 5 neurons.
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Kohonen networks – examples

Linear topology, 15 neurons.
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Kohonen networks – examples

Linear topology, 15 neurons.
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Kohonen networks – examples

Rectangular topology, grid of neurons 2 by 3.
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Kohonen networks – examples

Hexagonal topology, grid of neurons 2 by 3.
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Kohonen networks – examples

Hexagonal topology, grid of neurons 2 by 3.
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Kohonen networks – examples

Rectangular topology, grid of neurons 4 by 4.
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Kohonen networks – examples

Hexagonal topology, grid of neurons 4 by 4.
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Kohonen networks – examples

Rectangular topology, grid of neurons 5 by 5.
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Kohonen networks – examples

Hexagonal topology, grid of neurons 5 by 5.
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Recurrent neural networks

Marcin Pluciński Artificial neural networks and their applications 173 / 252



Recurrent neural networks

General informations

There are feedback connections in networks – outputs of neurons
are connected to inputs.

In the network, signal ‘oscillates’ between the output and the input
to achieve a certain convergence criterion – and then it is given to
the output.

Recurrent neural networks are nonlinear dynamic systems from the
point of view of systems theory.

Tasks

Autoassociative memory.

Optimization.
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Discrete Hopfield network
Main features

One layer (virtual) of neurons with feedback connections.

No of neurons = no of inputs = no of outputs = n.

Square weight matrix of size n × n.
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Discrete Hopfield network

Each neuron determines its output signal on the base of formula:

φi (k) =
n∑

j=1

wij · yj + bi

yi (k + 1) =

 1 for φi (k) > 0
yi (k) for φi (k) = 0
0 for φi (k) < 0

where:

yi (k) – output of the neuron no i in moment k ,

wij – weight of the connection between output of the neuron no j
and input of the neuron no i ,

bi – threshold of the neuron no i (often not used!).
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Discrete Hopfield network

There are feedback connections in the network. Output of each
neuron is connected to inputs of all other neurons. There is no
connection between the output and the input of the same neuron:

wii = 0 .

The weight matrix is symmetric:

wij = wji .

Since each neuron is connected with each other, the network has
no layers.
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Discrete Hopfield network – behavior

At the beginning moment k = 0, we connect input signals
xi ∈ {0, 1} to the neuron, and in that way we define the beginning
state of the network.

yi (0) = xi

In this moment, inputs are disconnected and an iterative process
of state updating begins in the network, according to formulas:

φi (k) =
n∑

j=1

wij · yj + bi

yi (k + 1) =

 1 for φi (k) > 0
yi (k) for φi (k) = 0
0 for φi (k) < 0
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Discrete Hopfield network – behavior

Changes of the state are realised in discrete moments of time.

The network works asynchronously – in one moment of time only
one output is actualised (usually chosen at random).

After finished number of iterations the network reaches a stable
state:

yi (k + 1) = yi (k) , ∀i

At this moment, the (so called) recovery process ends and the
state of the network is transmitted to the output.
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Discrete Hopfield network – energy function

The Hopfield network has defined, so called, energy function.

There is defined a certain value of this function for each network
state (defined by output vector y).

The energy function is bounded on the bottom and non-growing
during state changes – it means that during the recovery process
the energy function value decreases or remains unchanged.

Stable state, achieved at the end of the recovery process,
corresponds to a local minimum of the energy function.

Energy function can be described by formula:

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi
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Discrete Hopfield network – energy function

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

Let’s assume that the state of the neuron i changes in moment k
according to formula:

yi (k + 1) = yi (k) + ∆yi (k)

The network works asynchronously, so the state of other neurons is
unchanged, i.e.:

yj(k + 1) = yj(k) , for j 6= i

The change of energy can be calculated as:

∆E (k) = E (y(k+1))−E (y(k)) = −∆yi (k)·

 n∑
j=1

wijyj + bi

 = −∆yi (k)·φi (k)
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Discrete Hopfield network – energy function

∆E (k) = E (y(k+1))−E (y(k)) = −∆yi (k)·

 n∑
j=1

wijyj + bi

 = −∆yi (k)·φi (k)

If φi (k) = 0 than the change of energy equals 0.

Other possible cases are considered in the table.

yi (k + 1) yi (k) ∆yi (k) φi (k) ∆E (k)

0 0 0 − 0
0 1 −1 − −
1 0 1 + −
1 1 0 + 0

Therefore, there is always:
∆E (k) ≤ 0

E (y(k + 1)) ≤ E (y(k))
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Discrete Hopfield network – energy function

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

It can be noticed that the energy function is bounded on the bottom,
because:

|E (y)| ≤ 1
2

n∑
i=1

n∑
j=1

|wij |+
n∑

i=1

|bi |

Because a monotonic and limited sequence must be convergent, the
value E (y) will tend towards a certain finite value Emin.
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Discrete Hopfield network – energy function

The set of energy function values is finite – it results from the
fact, that its domain is finite because yi ∈ {0, 1}.

It means that the set of possible energy changes ∆E is also finite.

Possible energy changes can not be infinitely small (what could
result in an infinitely long setting up of the state).

Finally, the energy reaches a steady state Emin in finite number of
steps kmax .

The state y in which E (y) = Emin (local minimum) is the stable
state.
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Discrete Hopfield network – energy function

The beginning state of the network is defined by the chose of y(0).

If it is not a stable state, in the course of subsequent iterations
(recovery phase), y changes in such a way that the energy
function value decreases until reaching the local minimum.
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Discrete Hopfield network – energy function

Stable states are called attractors.

To each attractor, we can assign a set of initial states y(0), which
initiate an evolution of the network state ending in it. Such set is
called a basin of attraction of the attractor.

The choice of connection weights between neurons has a decisive
impact for the number of attractors, their mutual distance and the
corresponding value of the energy function (depth of basins).
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Discrete Hopfield network – energy function

The shape of attractions areas of the recurrent network: a) contour plot,
b) mapping of directions of energy function changes during the recovery

phase.
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Autoassociative memory

The concept of such a memory is associated with one of the basic
functions of the brain. For example, straining attention we can
recognize unclear speech, read unreadable handwriting, guess the
entire word in a crossword, seeing only some of letters.

Such process is called association. This is done by recovering the
entire available information on the base of fragments or
information that is distorted.
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Autoassociative memory

Let’s assume that we have a set of M different patterns:

{x1, x2, . . . , xM} ⊂ Rn.

Autoassociative memory connected with this set is the system
implementing a mapping:

F : Rn → Rn ,

such that:
F (xi ) = xi , for i = 1 . . .M

and:
F (x) = xS ,

where: xS is the most similar to x from all M patterns.
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Autoassociative memory
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Similarity degree
Similarity degree for two vectors x and y can be defined on the base of
Euclidean measure:

dE (x, y) =

√√√√ n∑
i=1

(xi − yi )2 for x, y ∈ Rn

As, analysed here vectors belong to the Hamming space:

Hn = {x ∈ Rn : xi ∈ {0, 1}} ,

i.e. set of n-dimensional vectors with elements 0 and 1, we can apply, so
called, Hamming distance measure dH . For vectors x and y, it is equal to
the number of different elements.

For:
x = [1, 0, 0, 1, 0] i y = [1, 0, 1, 1, 1]

we have:
dH(x, y) = 2

Marcin Pluciński Artificial neural networks and their applications 191 / 252



Similarity degree
Similarity degree for two vectors x and y can be defined on the base of
Euclidean measure:

dE (x, y) =

√√√√ n∑
i=1

(xi − yi )2 for x, y ∈ Rn

As, analysed here vectors belong to the Hamming space:

Hn = {x ∈ Rn : xi ∈ {0, 1}} ,

i.e. set of n-dimensional vectors with elements 0 and 1, we can apply, so
called, Hamming distance measure dH . For vectors x and y, it is equal to
the number of different elements.

For:
x = [1, 0, 0, 1, 0] i y = [1, 0, 1, 1, 1]

we have:
dH(x, y) = 2

Marcin Pluciński Artificial neural networks and their applications 191 / 252



Similarity degree
Similarity degree for two vectors x and y can be defined on the base of
Euclidean measure:

dE (x, y) =

√√√√ n∑
i=1

(xi − yi )2 for x, y ∈ Rn

As, analysed here vectors belong to the Hamming space:

Hn = {x ∈ Rn : xi ∈ {0, 1}} ,

i.e. set of n-dimensional vectors with elements 0 and 1, we can apply, so
called, Hamming distance measure dH . For vectors x and y, it is equal to
the number of different elements.

For:
x = [1, 0, 0, 1, 0] i y = [1, 0, 1, 1, 1]

we have:
dH(x, y) = 2

Marcin Pluciński Artificial neural networks and their applications 191 / 252



Hopfield network as an autoassociative memory

Described property of the Hopfield network (existence of attractors
to which the state of the network is evolving from the given initial
state) allows its application as an autoassociative memory.

The shape of the energy function plot (and the location of
attractors) depends on network weights.

So, it is enough to choose weights in such a way that each pattern
is one of attractors, and its basin of attraction is as wide and as
deep as possible to assure associations between initial and final
states.
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Learning of the Hopfield network

For originally described network, Hopfield proposed the following method
of weights calculation:

wij =

{ ∑M
m=1(2x (m)

i − 1)(2x (m)
j − 1) for i 6= j

0 for i = j

where:

M – number of patterns,

x
(m)
i – input no i for pattern no m.
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Learning of the Hopfield network

For discrete bipolar network (state described with −1 and 1) weights can
be calculated with other formulas.

If we have only one pattern:

x =

 x1
...
xn

 , xi ∈ {−1, 1}

weights can be calculated as (Hebbian rule):

wij =

{
1
n · xi · xj for i 6= j
0 for i = j

or in a matrix form:

W =
1
n

(x · xT − 1)
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Learning of the Hopfield network

If we have M patterns:

x =

 x
(1)
1 x

(2)
1 . . . x

(M)
1

... . . .
...

x
(1)
n x

(2)
n . . . x

(M)
n

 , xi ∈ {−1, 1}

weights can be calculated as (Hebbian rule):

wij =

{
1
n ·
∑M

m=1 x
(m)
i · x (m)

j for i 6= j

0 for i = j

or in a matrix form:

W =
1
n

(X · XT − 1M)
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Learning of the Hopfield network

If we have M patterns:

X =

 x
(1)
1 x

(2)
1 . . . x

(M)
1

... . . .
...

x
(1)
n x

(2)
n . . . x

(M)
n

 , xi ∈ {−1, 1}

weights can be also calculated with the application of pseudo-inverse
matrix:

W = X(XTX)−1XT
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Capacity of the Hopfield network

Capacity of the network learnt with Heebian rule equals 0.138 · n
(where n – number of neurons).

Capacity of the network learnt with pseudo-inverse method equals
n − 1.
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Capacity of the Hopfield network

Caution!

If the network remembers patterns {x1, x2, . . . , xM} it also
remembers (and can restore) their negations {x1, x2, . . . , xM}.

So, if the set of patterns consists of only one pattern, the network
has 2 attractors connected with the pattern and its negation.

For greater number of patterns, we have attractors located in
patterns, their negations, and conjunctions of patterns and
negations: (x1 AND x2, x1 AND x2, ...).

If we have many patterns, there will be also many spurious (false)
attractors which are not connected with any pattern. The
disadvantage of the network is also the fact that you can not
guarantee that all patterns become attractors.
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Hopfield network – example

Let’s assume that we have only 1 pattern (M = 1):

x = [1 0 1 0]T

Weights are calculated with formula:

wij =

{ ∑M
m=1(2x (m)

i − 1)(2x (m)−1
j ) for i 6= j

0 for i = j

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0
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Hopfield network – example

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0


Let’s check the network behavior for input:

xt = [1 0 1 0]T = y(0)

Activity of neurons:

φi (k) =
n∑

j=1

wij · yj(k)

As the result we get:

φ1(0) = 1
φ2(0) = −2
φ3(0) = 1
φ4(0) = −2

⇒

y1(1) = 1
y2(1) = 0
y3(1) = 1
y4(1) = 0
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Hopfield network – example
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j=1

wij · yj(k)

As the result we get:
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Hopfield network – example

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0


Let’s check the network behavior for input:

xt = [0 1 0 1]T = y(0)

Activity of neurons:

φi (k) =
n∑

j=1

wij · yj(k)

As the result we get:

φ1(0) = −2
φ2(0) = 1
φ3(0) = −2
φ4(0) = 1

⇒

y1(1) = 0
y2(1) = 1
y3(1) = 0
y4(1) = 1
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Hopfield network – character recognition

36 learning patterns – matrix 20× 16.
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Hopfield network – character recognition

Each character is represented by a matrix of size 20× 16 filled
with numbers −1 and 1.

Each character matrix is converted into vector (function
reshape(M,new row,new col) in MATLAB).

 • · · · •
...

...
• · · · •


20×16

−→


•
•
...
•


320×1

In that way, we get the matrix of patterns:

X = [x(1), x(2), . . . , x(M)]
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Hopfield network – character recognition
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Hopfield network – character recognition
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Hopfield network – character recognition
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Hopfield network – character recognition
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Hopfield network – character recognition
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Hopfield network – character recognition
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Interpolation of time series

Tasks:
1 prediction,
2 signal filtration.
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Interpolation of time series

Tasks:
1 prediction,
2 signal filtration.
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Interpolation of time series

1 We assume that the signal can be described by a deterministic
model.

2 We also accept the ‘naive’ assumption that the signal value in a
given, discrete moment of time k depends only on signal values in
earlier moments: k − 1, k − 2, e.t.c.

3 The basis for this assumption is the application of the signal model
in the form of a difference equation.
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Signal model – example

Suppose we have a homogeneous, linear differential equation in the form:

ÿ + 2ẏ + 2y = 0

The equation has a general solution:

y = e−t · (C1 cos(t) + C2 sin(t))

For example, for initial conditions: y(0) = 1 i ẏ(0) = 1, we can find
C1 = 1 i C2 = 2, and we have:

y = e−t · (cos(t) + 2 sin(t))
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Signal model – example

y = e−t · (cos(t) + 2 sin(t))
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Signal model – example

Differential equation ÿ + 2ẏ + 2y = 0 can therefore be treated as a
continuous model of the signal that we can see in the plot.
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Signal model – example

In computer modeling, the differential equation ÿ + 2ẏ + 2y = 0 can be
discretized.

Then, we will get a difference equation:

y(k) = y(k − 1) · 2 + 2T
1 + 2T + 2T 2 − y(k − 2) · 1

1 + 2T + 2T 2

The form and parameters of the equation depend on the applied
discretization method. Parameters also depend on the used sampling
step T .
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Signal model – example

Simulation of the model described by the difference equation:

y(k) = y(k − 1) ·
2 + 2T

1 + 2T + 2T 2
− y(k − 2) ·

1

1 + 2T + 2T 2

for the sampling step T = 0.5 and initial conditions y(0) = 1, y(1) = 0.
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Signal model – example
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Signal model – example

Discretization can significantly change the behavior of the model.The plot shows the
simulation of the model described by the difference equation:

y(k) = y(k − 1) ·
2 + 2T

1 + 2T + 2T 2
− y(k − 2) ·

1

1 + 2T + 2T 2

for the sampling step T = 0.1 and initial conditions y(0) = 1, y(1) = 0.

Marcin Pluciński Artificial neural networks and their applications 219 / 252



Signal model – example

Difference equation:

y(k) = y(k − 1) · 2 + 2T
1 + 2T + 2T 2 − y(k − 2) · 1

1 + 2T + 2T 2

can be presented more generally in the form:

y(k) = w1 · y(k − 1) + w2 · y(k − 2)

where: w1 = 2+2T
1+2T+2T 2 i w2 = 1

1+2T+2T 2

Such an equation can be easily modeled by one linear neuron!
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Signal model

Using more complex networks, we can model any (linear or non-linear)
difference equation with a general form:

y(k) = F (y(k − 1), y(k − 2), . . . y(k − n))

n – determines the size of the time window, i.e. we will use the n
previous signal values to predict the current value.

The neural network will have n inputs (previous signal values) and one
output (predicted actual value).
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Data preparation

Let us assume that we know the stock prices of a certain company:

Day 1 56
Day 2 58
Day 3 55
Day 4 53
Day 5 52
Day 6 50
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Data preparation

Day 1 56
Day 2 58
Day 3 55
Day 4 53
Day 5 52
Day 6 50

If we assume a size of the window
equal 3, training samples will take
the form:

Sample 1: 56 58 55 53
Sample 2: 58 55 53 52
Sample 3: 55 53 52 50

The network learned with their help will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3))
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Examples
The signal is given:
y = sin(t) + cos(t) + sin(3t) · cos(3t) + sin(5t) + cos(5t) + 0.3 sin(50t)
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Examples

We choose the size of the time window n = 4.

The network will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3), y(k − 4))

We take 6 neurons on the hidden layer.

The hidden layer has hyperbolic tangent activation function, the
output layer is linear.

We prepare learning data as shown before.
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Examples

Learning signal.
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Examples

Signal modeled by the neural network.
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Examples

Error of the network.
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Examples

Prediction for data not used in learning. Blue line – prediction, red line –
real value.
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Examples
We have data of the stock value of a certain company:
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Examples

We choose the size of the time window n = 5.

The network will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3), y(k − 4), y(k − 5))

We take 6 neurons on the hidden layer.

The hidden layer has hyperbolic tangent activation function, the
output layer is linear.

We prepare learning data as shown before.
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Examples

Learning signal.
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Examples

Signal modeled by the neural network.
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Examples

Error of the network.
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Examples

Prediction for data not used in learning. Blue line – prediction, red line –
real value.
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Examples

Learning signal – noisy sinusoid.
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Examples
The signal modeled by the network. The noise filtering effect is obtained
using a simple network composed of one linear neuron.
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Modeling of dynamic objects

Tasks:
1 identification,
2 control.
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Modeling of dynamic objects

The general model of a dynamic object has the form of a differential
equation:

F (y (n)(t), y (n−1)(t), . . . , ẏ(t), y(t), x (m)(t), x (m−1)(t), . . . , ẋ(t), x(t)) = 0

For real objects we always have: n ≥ m.

If the object is linear, it can be described by a linear differential equation:

any
(n)(t) + an−1y

(n−1)(t) + . . .+ a1ẏ(t) + a0y(t) =

= bmx
(m)(t) + bm−1x

(m−1)(t) + . . .+ b1ẋ(t) + b0x(t)
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Modeling of dynamic objects

Linear differential equation:

any
(n)(t) + an−1y

(n−1)(t) + . . .+ a1ẏ(t) + a0y(t) =

= bmx
(m)(t) + bm−1x

(m−1)(t) + . . .+ b1ẋ(t) + b0x(t)

has the form of a linear difference equation after discretization:

y(k) = A1y(k − 1) + A2y(k − 2) + . . .+ Any(k − n)+

+ B0x(k) + B1x(k − 1) + . . .+ Bmx(k −m)

Such an equation can be modeled using one linear neuron.
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Modeling of dynamic objects

Non-linear differential equation:

F (y (n)(t), y (n−1)(t), . . . , ẏ(t), y(t), x (m)(t), x (m−1)(t), . . . , ẋ(t), x(t)) = 0

has the form of a non-linear difference equation after discretization:

y(k) = F (y(k − 1), y(k − 2), . . . , y(k − n), x(k), x(k − 1), . . . , x(k −m))

Such equation can be modeled using a non-linear multi-layer
network.

n – determines the size of the time window for the output signal, a
m – determines the size of the time window for the input signal.

The neural network will have n + m + 1 inputs and 1 output.
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Data preparation

Let’s assume that we want to create a model of dynamics for changes in
fuel prices depending on the dollar exchange rate. Every week we
calculate the average dollar exchange rate and the average price of fuel.

Dollar Fuel
Week 1 3.20 4.70
Week 2 3.25 4.88
Week 3 3.15 4.73
Week 4 3.10 4.65
Week 5 3.12 4.60
Week 6 3.21 4.68
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Data preparation

Dollar Fuel
Week 1 3.20 4.70
Week 2 3.25 4.88
Week 3 3.15 4.73
Week 4 3.10 4.65
Week 5 3.12 4.60
Week 6 3.21 4.68

If we choose the size of the time window
for output n = 2 and for input m = 1,
learning sample will have the form:

Sample 1: 4.70 4.88 3.25 3.15 4.73
Sample 2: 4.88 4.73 3.15 3.10 4.65
Sample 3: 4.73 4.65 3.10 3.12 4.60
Sample 3: 4.65 4.60 3.12 3.21 4.68

The network learned with their help will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), x(k), x(k − 1))
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Example

The behavior of the dynamic object has been modeled:
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Example

The input and output signal of the object was saved:
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Example

We choose the size of the time window for output n = 2 and input
m = 1.

The network will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), x(k), x(k − 1))

We choose a network with one linear neuron.

We prepare learning data as before.
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Example

Red line – output training signal, blue line – signal generated by the
network.
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Neural network as a controller
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Preparation of training data
@relation labor
@attribute ’duration’ real
@attribute ’wage-increase-first-year’ real
@attribute ’wage-increase-second-year’ real
@attribute ’wage-increase-third-year’ real
@attribute ’cost-of-living-adjustment’ {’none’,’tcf’,’tc’}
@attribute ’working-hours’ real
@attribute ’pension’ {’none’,’ret_allw’,’empl_contr’}
@attribute ’standby-pay’ real
@attribute ’shift-differential’ real
@attribute ’education-allowance’ {’yes’,’no’}
@attribute ’statutory-holidays’ real
@attribute ’vacation’ {’below_average’,’average’,’generous’}
@attribute ’longterm-disability-assistance’ {’yes’,’no’}
@attribute ’contribution-to-dental-plan’ {’none’,’half’,’full’}
@attribute ’bereavement-assistance’ {’yes’,’no’}
@attribute ’contribution-to-health-plan’ {’none’,’half’,’full’}
@attribute ’class’ {’bad’,’good’}
@data
1,5,?,?,?,40,?,?,2,?,11,’average’,?,?,’yes’,?,’good’
2,4.5,5.8,?,?,35,’ret_allw’,?,?,’yes’,11,’below_average’,?,’full’,?,’full’,’good’
?,?,?,?,?,38,’empl_contr’,?,5,?,11,’generous’,’yes’,’half’,’yes’,’half’,’good’
3,3.7,4,5,’tc’,?,?,?,?,’yes’,?,?,?,?,’yes’,?,’good’
3,4.5,4.5,5,?,40,?,?,?,?,12,’average’,?,’half’,’yes’,’half’,’good’
2,2,2.5,?,?,35,?,?,6,’yes’,12,’average’,?,?,?,?,’good’
3,4,5,5,’tc’,?,’empl_contr’,?,?,?,12,’generous’,’yes’,’none’,’yes’,’half’,’good’
3,6.9,4.8,2.3,?,40,?,?,3,?,12,’below_average’,?,?,?,?,’good’
2,3,7,?,?,38,?,12,25,’yes’,11,’below_average’,’yes’,’half’,’yes’,?,’good’
1,5.7,?,?,’none’,40,’empl_contr’,?,4,?,11,’generous’,’yes’,’full’,?,?,’good’
3,3.5,4,4.6,’none’,36,?,?,3,?,13,’generous’,?,?,’yes’,’full’,’good’
2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,’full’,?,?,’good’
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Attribute types

Nominal attributes: they have no numerical value, the only
relations are ’equality’ and ’inequality’.

Order attributes: a relation of order is defined for them.

Interval attributes: a measure of the distance between attributes is
defined. The zero position in the interval scale is arbitrary.

Real attributes.
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Data normalization

Normalization is not always necessary, but almost always
recommended.

Unification of the importance and significance of attributes.

Normalization of outputs (in the case of multi-output models) –
important due to minimization of error for each output.

Easier interpretation of the weight values.

Some networks (eg: RBF, Kohonen) require normalization for
correct work.
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Missing attributes

Removing of samples.

Completing of attributes.

Sample splitting.

For nominal attributes - treating a missing attribute as another
possible value.
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