
Artificial neural networks
and their applications

Marcin Pluciński
mplucinski@wi.zut.edu.pl

Chair of Artificial Intelligence Methods and Applied Mathematics

Faculty of Computer Science and Information Technology
West Pomeranian University of Technology

Marcin Pluciński Artificial neural networks and their applications 1 / 252

History of artificial neural networks

1943: McCulloch i Pitts – the first model of artificial neuron.

1949: Hebb – a mechanism of the information remembering by
biological neurons.

1958: Rosenblatt – Perceptron neural network.

1960: Widrow – MADALINE neural network.

1968: Minsky i Papert – critical voice.

Marcin Pluciński Artificial neural networks and their applications 2 / 252

Biological neuron

Neuron

Neuron is the basic building block of the nervous system. It is a cell,
which is able to receive and transmit electrical signals.

Działanie

If the value of the electric signal put to the neuron exceeds a certain
threshold, the neuron is stimulated. Stimulated neuron is discharged and
the resulting signal is sent to other neurons. As long as the input signals
exceeds a certain threshold, discharge volume remains the same.

Marcin Pluciński Artificial neural networks and their applications 3 / 252

Biological neuron

The neuron consists of the following elements.

1 Many dendrites, which take impulses from other neurons.

2 The cell body with the nucleus.

3 One axon, which transmits the signal to next cells.

4 Synapses – neurotransmitters which weaken or strengthen the
output signal.

Marcin Pluciński Artificial neural networks and their applications 4 / 252

Artificial neuron

y(x) = f (
n∑

i=1

wixi + b) = f (wTx + b)

Marcin Pluciński Artificial neural networks and their applications 5 / 252

Activation functions – unipolar threshold (step) function

f (φ) =

{
1, for φ > 0
0, for φ ≤ 0

Marcin Pluciński Artificial neural networks and their applications 6 / 252

Activation functions – bipolar threshold (step) function

f (φ) =

{
1, for φ > 0
−1, for φ ≤ 0

Marcin Pluciński Artificial neural networks and their applications 7 / 252

Activation functions – sigmoid (logistic) function

f (φ) =
1

1 + e−βφ

Marcin Pluciński Artificial neural networks and their applications 8 / 252

Activation functions – hyperbolic tangent function

f (φ) = tanh(φ) =
eβφ − e−βφ

eβφ + e−βφ

Marcin Pluciński Artificial neural networks and their applications 9 / 252

Activation functions – linear function

f (φ) = φ

Marcin Pluciński Artificial neural networks and their applications 10 / 252

Activation functions – piecewise-linear function

f (φ) =

 −1, for φ < −1
φ, for −1 ≤ φ < 1
1, for φ ≥ 1

Marcin Pluciński Artificial neural networks and their applications 11 / 252

Types of neural networks

Multilayer, feedforward neural network.

Marcin Pluciński Artificial neural networks and their applications 12 / 252

Types of neural networks

Recurrent neural network.

Marcin Pluciński Artificial neural networks and their applications 13 / 252

Types of neural networks

Cellular neural network.

Marcin Pluciński Artificial neural networks and their applications 14 / 252

Applications

Neural networks can perform the following tasks:

1 classification,

2 approximation (modelling),

3 prediction,

4 signals filtration,

5 data analysis (e.g. clustering, PCA),

6 optimisation,

7 other (e.g. data/image compression).

Marcin Pluciński Artificial neural networks and their applications 15 / 252

Perceptron

General information

A single layer of neurons

Unipolar of bipolar threshold activation function

Supervised learning

Learning algorithm – delta rule

Application – classification

Marcin Pluciński Artificial neural networks and their applications 16 / 252

Perceptron

Marcin Pluciński Artificial neural networks and their applications 17 / 252

Perceptron

y(x) = f (
n∑

i=0

wixi) = f (wTx)

Marcin Pluciński Artificial neural networks and their applications 18 / 252

Perceptron
A single neuron separates the input space into two parts. Its
basic task is a binary classification.

Marcin Pluciński Artificial neural networks and their applications 19 / 252

Perceptron

Binary classification

The aim of the classification is assigning an object to a class
at the basis of its attributes values (input data). In the binary
classification case, there are possible two classes at the output.

Let’s consider a training set (a set of pairs):

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} are given output data.

Marcin Pluciński Artificial neural networks and their applications 20 / 252

Perceptron

Hyper-plane equation in the space Rn:

w0 + w1 · x1 + w2 · x2 + . . .+ wn · xn = 0

wTx = 0

Learning of the neuron is based on the selection of the weights
in such a way that:

wTx > 0 is satisfied for samples with given output d
equal 1,

wTx ≤ 0 is satisfied for samples with given output d
equal 0 or −1.

Marcin Pluciński Artificial neural networks and their applications 21 / 252

Perceptron

For example, for the neuron with two inputs:

φ = w0 + w1 · x1 + w2 · x2

separating line is described by the equation:

w0 + w1 · x1 + w2 · x2 = 0

or:
x2 = −w1

w2
x1 −

w0

w2

Marcin Pluciński Artificial neural networks and their applications 22 / 252

Learning of the network

Purpose of learning

The network is learnt on the base of learning data.

Learning data – represent information about the desired
network behavior.

Purpose of learning – a selection of weights to realise the
desired task.

Marcin Pluciński Artificial neural networks and their applications 23 / 252

Learning methods

Supervised learning

Learning data consist of pairs:

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} or di ∈ R are connected with them, given output
data.

Unsupervised learning

Learning data has a form of the set:

(xi), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data.

Marcin Pluciński Artificial neural networks and their applications 24 / 252

Learning methods

Supervised learning

Learning data consist of pairs:

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} or di ∈ R are connected with them, given output
data.

Unsupervised learning

Learning data has a form of the set:

(xi), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data.

Marcin Pluciński Artificial neural networks and their applications 24 / 252

Delta rule

After presentation of the sample number p, we modify the
weights according to the formula:

w(k + 1) = w(k) + η · δp · xp

where:

δp = dp − yp =

 −1
0
1

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Marcin Pluciński Artificial neural networks and their applications 25 / 252

Learning algorithm

1 Initiation of weights

2 n = 1 (set the counter)

3 while n > 0 (check if all samples are classified correctly)

n = 0 (reset the counter)

Mix samples randomly in the training set
For successive samples:

Calculate output yp of the neuron for sample p
Calculate error δp = dp − yp
if δp! = 0

w(k + 1) = w(k) + η · δp · xp
n + + (increment the counter)

Marcin Pluciński Artificial neural networks and their applications 26 / 252

Features of the learning algorithm

It always finishes its operation with a success if the set
of patterns is linearly separable

It doesn’t stop when the patterns are not linearly
separable.

The margin of separation is always greater than or equal
to zero.

In practice, we want the margin of separation to be the
greatest.

Marcin Pluciński Artificial neural networks and their applications 27 / 252

Example
We have a neuron with a unipolar threshold (step) activation function.

Using the delta rule, choose the weights of the neuron in order to
properly classify learning samples shown in the table below.

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Rate of learning: η = 0.2.
Initial weights: w(0) = [w0 w1 w2]T = [0.1 0.5 0.8]T .

Marcin Pluciński Artificial neural networks and their applications 28 / 252

Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Marcin Pluciński Artificial neural networks and their applications 29 / 252

Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w(0) = [w0 w1 w2]T = [0.1 0.5 0.8]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1−

w0

w2
= −

5

8
x1−

1

8

Marcin Pluciński Artificial neural networks and their applications 30 / 252

Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.1 0.1 0.6]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1−

w0

w2
= −

1

6
x1 +

1

6

Marcin Pluciński Artificial neural networks and their applications 31 / 252

Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.3−0.5 0.4]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1 −

w0

w2
=

5

4
x1 +

3

4

Marcin Pluciński Artificial neural networks and their applications 32 / 252

Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.1−0.3 0.8]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1 −

w0

w2
=

3

8
x1 +

1

8

Marcin Pluciński Artificial neural networks and their applications 33 / 252

Example

x1 x2 d
1 2 1
2 3 1
2 1 0
3 1 0

Weights:

w = [w0 w1 w2]T = [−0.3−0.7 0.6]T

Separating line:

w0 + w1x1 + w2x2 = 0

or:

x2 = −
w1

w2
x1 −

w0

w2
=

7

6
x1 +

3

6

Marcin Pluciński Artificial neural networks and their applications 34 / 252

Example – learning with different η value

η = 1 η = 0.05

Marcin Pluciński Artificial neural networks and their applications 35 / 252

Learning with a given separation margin γ

Marcin Pluciński Artificial neural networks and their applications 36 / 252

Learning with a given separation margin γ

Marcin Pluciński Artificial neural networks and their applications 37 / 252

Learning algorithm with a given separation margin

1 Initiation of weights

2 n = 1 (set the counter)

3 while n > 0 (check if all samples are classified correctly)

n = 0 (reset the counter)

Mix samples randomly in the training set
For successive samples:

Calculate output yp of the neuron for sample p
Calculate error δp = dp − yp
Calculate a distance between sample and separation
line lp =

φp

||w ||
if δp! = 0

w(k + 1) = w(k) + η · δp · xp
n + + (increment the counter)

elseif abs(lp) < γmin − tol (tol – small value, e.g. 0.01)

w(k + 1) = w(k) + η · (sgn(lp) · γmin − lp) · xp
n + + (increment the counter)

Marcin Pluciński Artificial neural networks and their applications 38 / 252

Example – learning with a given separation margin γ

Learning without given separation
margin

γmin = 0.6

Marcin Pluciński Artificial neural networks and their applications 39 / 252

Example – multi-value classification

Samples belong to 4
classes:

2.04 5.54 A
1.92 4.58 A

...
−3.67 3.04 B
−3.02 3.05 B

...
3.08 −5.95 C
3.34 −5.94 C

...
−4.13 −2.95 D
−4.44 −2.94 D

...

Marcin Pluciński Artificial neural networks and their applications 40 / 252

Example – multi-value classification

We create one layer network with 4 neurons.

Marcin Pluciński Artificial neural networks and their applications 41 / 252

Example – multi-value classification

We can code the given
output in the following
way:

A → 1000
B → 0100
C → 0010
D → 0001

Data after coding:

x1 x2 Class d1 d2 d3 d4

2.04 5.54 A 1 0 0 0
1.92 4.58 A 1 0 0 0

...
−3.67 3.04 B 0 1 0 0
−3.02 3.05 B 0 1 0 0

...
3.08 −5.95 C 0 0 1 0
3.34 −5.94 C 0 0 1 0

...
−4.13 −2.95 D 0 0 0 1
−4.44 −2.94 D 0 0 0 1

...

Marcin Pluciński Artificial neural networks and their applications 42 / 252

Example – multi-value classification

Each neuron can be learnt separately with given output: d1,
d2, d3 and d4. After learning (with the given separation
margin):

Marcin Pluciński Artificial neural networks and their applications 43 / 252

Example – multi-value classification

Is it possible to create the
network with only 2
outputs and coding below?

A → 00
B → 10
C → 11
D → 01

Marcin Pluciński Artificial neural networks and their applications 44 / 252

ADALINE neuron (Adaptive Linear Neuron)

y(x) = φ =
n∑

i=0

wixi = wTx

Marcin Pluciński Artificial neural networks and their applications 45 / 252

Delta rule
After presentation of the sample number p, we modify the weights
according to the formula:

w(k + 1) = w(k) + η · δp · xp

where:
δp = dp − yp

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Cumulative correction
After presentation of all samples from the learning data set we can calculate:

∆w =
1

L
η

L∑
p=1

δp · xp

Marcin Pluciński Artificial neural networks and their applications 46 / 252

Delta rule
After presentation of the sample number p, we modify the weights
according to the formula:

w(k + 1) = w(k) + η · δp · xp

where:
δp = dp − yp

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Cumulative correction
After presentation of all samples from the learning data set we can calculate:

∆w =
1

L
η

L∑
p=1

δp · xp

Marcin Pluciński Artificial neural networks and their applications 46 / 252

Learning algorithm

1 Initiation of weights

2 Q = Real max value (set large value of the error in the beginning)

3 while Q > Qmin (check if the actual error is smaller than the given error)

Q = 0 (reset the error)

Mix samples randomly in the training set
For successive samples:

Calculate output yp of the neuron for sample p
Calculate error δp = dp − yp
Calculate new weights w(k + 1) = w(k) + η · δp · xp
Q = Q + δ2

p

Calculate mean square error Q = Q/L (L – number of

samples)

Marcin Pluciński Artificial neural networks and their applications 47 / 252

Neuron with a nonlinear activation
function

y(x) = f (
n∑

i=0

wixi) = f (wTx)

Marcin Pluciński Artificial neural networks and their applications 48 / 252

Generalized delta rule

After presentation of the sample number p, we modify the weights
according to the formula:

w(k + 1) = w(k) + η · δp · f ′(φp) · xp

where:
δp = dp − yp

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Generalized error

δ′p = δp · f ′(φp)

Marcin Pluciński Artificial neural networks and their applications 49 / 252

Generalized delta rule

After presentation of the sample number p, we modify the weights
according to the formula:

w(k + 1) = w(k) + η · δp · f ′(φp) · xp

where:
δp = dp − yp

dp – given output for the sample no p
yp – output of the neuron calculated for the sample no p
xp – input for the sample no p
η – rate of learning
k – learning step

Generalized error

δ′p = δp · f ′(φp)

Marcin Pluciński Artificial neural networks and their applications 49 / 252

Derivatives of activation functions

Derivative of the sigmoid activation function:

f (φ) =
1

1 + e−βφ

can be calculated with formula:

f ′(φ) = β · f (φ) · (1− f (φ))

Derivative of the hyperbolic tangent activation function:

f (φ) = tanh(φ) =
eβφ − e−βφ

eβφ + e−βφ

can be calculated with formula:

f ′(φ) = β · (1− f 2(φ))

Marcin Pluciński Artificial neural networks and their applications 50 / 252

Derivatives of activation functions

Derivative of the sigmoid activation function:

f (φ) =
1

1 + e−βφ

can be calculated with formula:

f ′(φ) = β · f (φ) · (1− f (φ))

Derivative of the hyperbolic tangent activation function:

f (φ) = tanh(φ) =
eβφ − e−βφ

eβφ + e−βφ

can be calculated with formula:

f ′(φ) = β · (1− f 2(φ))

Marcin Pluciński Artificial neural networks and their applications 50 / 252

Generalized delta rule

The algorithm is convergent to nearest local minimum of
the error function Q(w).

The algorithm does not guarantee finding of the global
minimum!

There is necessity of learning with different, random
initial weights.

Marcin Pluciński Artificial neural networks and their applications 51 / 252

Momentum component

After presentation of the sample number p, we modify the weights
according to the formula:

∆w(k + 1) = η · δp · f ′(φp) · xp + α ·∆w(k)

w(k + 1) = w(k) + ∆w(k + 1)

where:
α – momentum coefficient,
k – learning step.

Marcin Pluciński Artificial neural networks and their applications 52 / 252

Momentum component
Momentum component:

accelerates the process of the network learning,

allows the use of larger values of the rate of learning η,

allows to skip local minima of the error,

eliminates oscillations of weights during learning.

Marcin Pluciński Artificial neural networks and their applications 53 / 252

Momentum component
Momentum component:

accelerates the process of the network learning,

allows the use of larger values of the rate of learning η,

allows to skip local minima of the error,

eliminates oscillations of weights during learning.

Marcin Pluciński Artificial neural networks and their applications 54 / 252

Momentum component

Momentum component:

accelerates the process of the network learning,

allows the use of larger values of the rate of learning η,

allows to skip local minima of the error,

eliminates oscillations of weights during learning.

Marcin Pluciński Artificial neural networks and their applications 55 / 252

Momentum component

An exemplary process of learning:

a) small η coefficient,

b) large η coefficient,

c) large η coefficient with momentum component.

Marcin Pluciński Artificial neural networks and their applications 56 / 252

Multilayer, feedforward neural network

Marcin Pluciński Artificial neural networks and their applications 57 / 252

Choice of the network structure

Marcin Pluciński Artificial neural networks and their applications 58 / 252

Choice of the network structure

Marcin Pluciński Artificial neural networks and their applications 59 / 252

Learning data

Marcin Pluciński Artificial neural networks and their applications 60 / 252

Learning data

Marcin Pluciński Artificial neural networks and their applications 61 / 252

Approximation with a polynomial of the 1-st order

Learning data error (blue) = 44.30;
Testing data error (red) = 44.37

Marcin Pluciński Artificial neural networks and their applications 62 / 252

Approximation with a polynomial of the 3-rd order

Learning data error (blue) = 14.69;
Testing data error (red) = 17.96

Marcin Pluciński Artificial neural networks and their applications 63 / 252

Approximation with a polynomial of the 5-th order

Learning data error (blue) = 12.37;
Testing data error (red) = 16.61

Marcin Pluciński Artificial neural networks and their applications 64 / 252

Approximation with a polynomial of the 7-th order

Learning data error (blue) = 11.99;
Testing data error (red) = 16.54

Marcin Pluciński Artificial neural networks and their applications 65 / 252

Approximation with a polynomial of the 9-th order

Learning data error (blue) = 10.21;
Testing data error (red) = 20.01

Marcin Pluciński Artificial neural networks and their applications 66 / 252

Approximation with a polynomial of the 11-th order

Learning data error (blue) = 10.19;
Testing data error (red) = 23.72

Marcin Pluciński Artificial neural networks and their applications 67 / 252

Approximation with a polynomial of the 13-th order

Learning data error (blue) = 5.02;
Testing data error (red) = 54.61

Marcin Pluciński Artificial neural networks and their applications 68 / 252

Overfitting and underfitting of the network

Learning data error (red) and testing data error (green) as a function of
polynomial order.

Marcin Pluciński Artificial neural networks and their applications 69 / 252

Overfitting and underfitting of the network

The network is underfitted (hidden layer with 1 neuron).

Marcin Pluciński Artificial neural networks and their applications 70 / 252

Overfitting and underfitting of the network

The network is overfitted (hidden layer with 10 neurons).

Marcin Pluciński Artificial neural networks and their applications 71 / 252

Overfitting and underfitting of the network

The network is learnt correctly (hidden layer with 3 neurons).

Marcin Pluciński Artificial neural networks and their applications 72 / 252

Overfitting and underfitting of the network

Correctly learnt network (left) and overfitted network (right).

Marcin Pluciński Artificial neural networks and their applications 73 / 252

Overfitting and underfitting of the network

Correctly learnt network (left) and underfitted network (right).

Marcin Pluciński Artificial neural networks and their applications 74 / 252

Overfitting and underfitting of the network

Marcin Pluciński Artificial neural networks and their applications 75 / 252

Multilayer, feedforward neural network

Marcin Pluciński Artificial neural networks and their applications 76 / 252

Multilayer, feedforward neural network

We can consider a N-layer network with the same activation functions
f (φ). Let’s introduce the following notation:

n = 0, . . . ,N – number of the layer

p = 1, . . . , L – number of the sample (L – no of samples in the
learning set)

i , j = 1, . . . , tn – no of the neuron on the layer n (tn – no of
neurons on the layer n)

Marcin Pluciński Artificial neural networks and their applications 77 / 252

Multilayer, feedforward neural network

Output of the neuron j on the layer no n can be calculated as:

vnp
j = f (φnpj) = f

(
tn−1∑
i=0

wn
ji · v

(n−1)p
i

)
= f

(
wnT

j · v(n−1)p
)

(1)

where: wn
ji – weight on input no i .

yp
j = vNp

j xpi = v0p
i

We can calculate generalized error for the output layer:

δ′Npj = f ′(φNp
j) · δpj = f ′(φNp

j) · (dp
j − yp

j) (2)

Marcin Pluciński Artificial neural networks and their applications 78 / 252

Multilayer, feedforward neural network

Output of the neuron j on the layer no n can be calculated as:

vnp
j = f (φnpj) = f

(
tn−1∑
i=0

wn
ji · v

(n−1)p
i

)
= f

(
wnT

j · v(n−1)p
)

(1)

where: wn
ji – weight on input no i .

yp
j = vNp

j xpi = v0p
i

We can calculate generalized error for the output layer:

δ′Npj = f ′(φNpj) · δpj = f ′(φNpj) · (dp
j − yp

j) (2)

Marcin Pluciński Artificial neural networks and their applications 78 / 252

Multilayer, feedforward neural network

The error is backpropagated onto hidden layers:

δ′npj = f ′(φnpj)

tn+1∑
k=1

δ′
(n+1)p
k · w (n+1)

kj (3)

After calculating of generalized errors for all network neurons, we can
calculate weight corrections with the generalized delta rule:

∆wnp
ji = η · δ′npj · v

(n−1)p
i (4)

∆wnp
j = η · δ′npj · v

(n−1)p

Marcin Pluciński Artificial neural networks and their applications 79 / 252

Multilayer, feedforward neural network

The error is backpropagated onto hidden layers:

δ′npj = f ′(φnpj)

tn+1∑
k=1

δ′
(n+1)p
k · w (n+1)

kj (3)

After calculating of generalized errors for all network neurons, we can
calculate weight corrections with the generalized delta rule:

∆wnp
ji = η · δ′npj · v

(n−1)p
i (4)

∆wnp
j = η · δ′npj · v

(n−1)p

Marcin Pluciński Artificial neural networks and their applications 79 / 252

Backpropagation error algorithm

For the sample no p:

1 Put the vector xp into the network input.

2 Calculate the output vnp
j for each neuron on successive network

layers, from the first hidden layer to the output (formula 1).

3 Calculate generalized errors for the output layer (formula 2).

4 Backpropagate output generalized error onto hidden layers neurons
(formula 3).

5 Calculate correction of weights (formula 4) and modify network
weights.

Marcin Pluciński Artificial neural networks and their applications 80 / 252

Backpropagation error algorithm

For the sample no p:

1 Put the vector xp into the network input.

2 Calculate the output v
np
j for each neuron on successive network layers, from the first hidden layer to the

output (formula 1).

3 Calculate generalized errors for the output layer (formula 2).

4 Backpropagate output generalized error onto hidden layers neurons (formula 3).

5 Calculate correction of weights (formula 4) and modify network weights.

3A: After step no 3, calculate the sum of squared errors
Qp =

∑N
j=1(δNpj)2 and add it to the total error of learning data Q.

3B: If this was the last sample in the set, we must check whether the
error Q is smaller than the given threshold. If so, abort learning.

Marcin Pluciński Artificial neural networks and their applications 81 / 252

Network of linear neurons – example

x1 x2 d
1 2 1
0 1 2
2 0 3
...

...
...

w11(0) =

 0.1
−0.1

0.1

 w12(0) =

 0.2
−0.2

0.2



w21(0) =

 −0.1
0.2
0.3

 w22(0) =

 0.1
0.1
0.2

 w23(0) =

 −0.2
0.1
0.2

 w31(0) =


−0.1

0.3
−0.2

0.1



Marcin Pluciński Artificial neural networks and their applications 82 / 252

RBF Neural Networks

RBF – Radial Basis Function

Neurons in the hidden layer implements the function changing its value
radially around a certain point c known as the center of the neuron.

The RBF function has the general form:

f (x) = φ(||x− c||)

where: ||x− c|| – the distance between a sample x and the center c.

Marcin Pluciński Artificial neural networks and their applications 83 / 252

RBF Neural Networks

One of the most popular RBF functions is the Gauss function:

φ(x) = exp

(
−||x− c||2

2σ2

)
where:

||x− c|| =

√√√√ n∑
i=1

(xi − ci)2 , x =

 x1
...
xn

 , c =

 c1
...
cn


The parameter σ defines the spread of the RBF function.

Marcin Pluciński Artificial neural networks and their applications 84 / 252

Gauss function

φ(x) = exp

(
−||x− c||2

2σ2

)

c = 5, σ = 1 c = [4 6]T , σ = 1

Marcin Pluciński Artificial neural networks and their applications 85 / 252

Gauss function

φ(x) = exp

(
−||x− c||2

2σ2

)

Marcin Pluciński Artificial neural networks and their applications 86 / 252

Structure of the RBF network

Marcin Pluciński Artificial neural networks and their applications 87 / 252

Performance of the RBF network

In classification tasks, the RBF neuron divides the input space into 2
parts with a boundary which has the shape of a circle (for 2 inputs), a
sphere (for 3 inputs) or hyper-sphere.

Marcin Pluciński Artificial neural networks and their applications 88 / 252

Learning of the RBF network

Learning of the RBF network is supervised. Before learning, the input
part of data samples should be normalized.

1 Choose the number K of RBF neurons on the hidden layer.

2 Determine centres ci and spreads σi of RBF neurons.

3 Determine weights wj of output layer neurons.

Marcin Pluciński Artificial neural networks and their applications 89 / 252

Determination of centres ci and spreads σi

In the simplest case, centres of RBF neurons can be selected randomly
(uniform distribution of centres in the input space is very advantageous).

The spread can be the same for all neurons and equal:

σ =
d√
2K

where: d – the maximum distance between the centres.

Another way is to take σi equal to mean standard deviation of the
distance of samples from the centre they belongs to.

σi can be also equal to the distance between the centre ci from
the closest neighbour centre.

The best result is obtained by dividing the data into learning and
validating parts and the application of the validation.

Marcin Pluciński Artificial neural networks and their applications 90 / 252

Determination of centres ci – clusterization

K-means algorithm:

1 Generate randomly K points in the input space (uniform
distribution of points in the input space is very advantageous).
These points are the initial cluster centres ci .

2 Assign each sample to the nearest center ci .

3 Calculate new cluster centres:

cnewi =
1
Ni

Ni∑
j=1

x(i)
j

where: x(i)
j – sample no j which belongs to cluster i , Ni – no of

samples that belongs to cluster i .

4 Check the displacement of centres:

∆i = ||cnewi − ci ||

5 If max ∆i > ε go back to point 2, otherwise the algorithm is
finished.

Marcin Pluciński Artificial neural networks and their applications 91 / 252

K-means algorithm – example

Marcin Pluciński Artificial neural networks and their applications 92 / 252

K-means algorithm – example

Marcin Pluciński Artificial neural networks and their applications 93 / 252

K-means algorithm – example

Marcin Pluciński Artificial neural networks and their applications 94 / 252

K-means algorithm – example

Marcin Pluciński Artificial neural networks and their applications 95 / 252

K-means algorithm – example

Marcin Pluciński Artificial neural networks and their applications 96 / 252

Determination of output layer weights

1 We have determined centres and spreads of RBF neurons, so
output layer weights can be learnt on the base of the delta rule.

2 Weights can be also calculated in such a way that the mean
square error of the model is minimised.

Marcin Pluciński Artificial neural networks and their applications 97 / 252

Calculation of weights
For each sample p we can create the equation:

w0 + w1 · φ(||x(p) − c1||) + . . .+ wK · φ(||x(p) − cK ||) = d (p)

Assuming that we have L samples, we obtain the system of L equations,
with K + 1 unknown weights wi .

This system can be written as:

G ·w = d

where:

G =



1 φ(||x(1) − c1||) . . . φ(||x(1) − cK ||)
...
1 φ(||x(p) − c1||) . . . φ(||x(p) − cK ||)
...
1 φ(||x(L) − c1||) . . . φ(||x(L) − cK ||)


w =


w0
w1
...

wK

 d =



d (1)

...
d (p)

...
d (L)



Marcin Pluciński Artificial neural networks and their applications 98 / 252

Calculation of weights

The solution which minimises the mean square error of the
model can be calculated as:

w = G+ · d = (GT · G)−1 · GT · d

Marcin Pluciński Artificial neural networks and their applications 99 / 252

Determination of the RBF neurons number

1 Divide data into learning and validation parts.

2 Create the network with 1 RBF neuron, next with 2 neurons and
so on.

3 Observe the error of the learning and validating data set.

4 If the error of the validating set begins to grow, stop the addition
of neurons.

Marcin Pluciński Artificial neural networks and their applications 100 / 252

newrb method

1 Assume the spread of RBF neurons (the same for all).

2 Assume the minimum mean square error of the model.

3 Create the network with 1 RBF neuron.

4 Calculate the error for each sample.

5 Calculate the mean square error (MSE) of the model.

6 If MSE is greater than assumed minimum, add next RBF neuron
and locate its center in the sample which cause the greatest error.
Calculate output layer weights and go back to point 4.
Otherwise stop learning.

Marcin Pluciński Artificial neural networks and their applications 101 / 252

newrb method – example: σ = 1

Marcin Pluciński Artificial neural networks and their applications 102 / 252

newrb method – example: σ = 1

Marcin Pluciński Artificial neural networks and their applications 103 / 252

newrb method – example: σ = 1

Marcin Pluciński Artificial neural networks and their applications 104 / 252

newrb method – example: σ = 1

Marcin Pluciński Artificial neural networks and their applications 105 / 252

newrb method – example: σ = 0.5

Marcin Pluciński Artificial neural networks and their applications 106 / 252

newrb method – example: σ = 0.5

Marcin Pluciński Artificial neural networks and their applications 107 / 252

newrb method – example: σ = 0.5

Marcin Pluciński Artificial neural networks and their applications 108 / 252

newrb method – example: σ = 0.5

Characteristic for the network with 9 RBF neurons.

Marcin Pluciński Artificial neural networks and their applications 109 / 252

newrb method – example: σ = 0.5

Marcin Pluciński Artificial neural networks and their applications 110 / 252

newrbe method
1 Assume the spread of RBF neurons (the same for all).

2 Assume the number of RBF neurons equal to the number of
samples. Locate centres of neurons in learning samples.

3 Calculate output layer weights.

There is only one (!) parameter to tune in the network. The rest
is defined by data (centres) or calculated (weights).

The network can be easily overfitted. For very small σ values the
learning data error decreases to almost zero.

Value of σ must be determined with the application of validation.
If the amount of data is large, we can divide it into training and
validating parts. As the σ value we must take the value that
minimises validating data error.

If the amount of data is small – we must apply crossvalidation.

Marcin Pluciński Artificial neural networks and their applications 111 / 252

newrbe method
1 Assume the spread of RBF neurons (the same for all).

2 Assume the number of RBF neurons equal to the number of
samples. Locate centres of neurons in learning samples.

3 Calculate output layer weights.

There is only one (!) parameter to tune in the network. The rest
is defined by data (centres) or calculated (weights).

The network can be easily overfitted. For very small σ values the
learning data error decreases to almost zero.

Value of σ must be determined with the application of validation.
If the amount of data is large, we can divide it into training and
validating parts. As the σ value we must take the value that
minimises validating data error.

If the amount of data is small – we must apply crossvalidation.

Marcin Pluciński Artificial neural networks and their applications 111 / 252

newrbe method– example: σ = 0.1

Marcin Pluciński Artificial neural networks and their applications 112 / 252

newrbe method– example: σ = 0.5

Marcin Pluciński Artificial neural networks and their applications 113 / 252

newrbe method– example: σ = 1

Marcin Pluciński Artificial neural networks and their applications 114 / 252

newrbe method– example: σ = 10

Marcin Pluciński Artificial neural networks and their applications 115 / 252

newrbe method– example: σ = 100

Marcin Pluciński Artificial neural networks and their applications 116 / 252

newrbe method – crossvalidation error

Crossvalidation error determined on the base of ‘leave one out’ method
for different σ values.

Marcin Pluciński Artificial neural networks and their applications 117 / 252

Learning methods

Supervised learning

Learning data consist of pairs:

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} or di ∈ R are connected with them, given output
data.

Unsupervised learning

Learning data has a form of the set:

(xi), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data.

Marcin Pluciński Artificial neural networks and their applications 118 / 252

Learning methods

Supervised learning

Learning data consist of pairs:

(xi , di), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data and
di ∈ {0, 1} or di ∈ R are connected with them, given output
data.

Unsupervised learning

Learning data has a form of the set:

(xi), i = 1 . . . L,

where xi = (xi1, xi2, . . . xin ∈ Rn) are input data.

Marcin Pluciński Artificial neural networks and their applications 118 / 252

Unsupervised learning

The given output is not required in samples.

The network should ‘discover’ (without external help) patterns,
features, interdependencies, arrangement of the input data, and
then provide this information in a properly encoded form in the
output.

Redundancy of the data is required for the effective unsupervised
learning.

During learning, the network usually tries to divide the learning set
into classes, according to certain common features of samples.
The network should be able to identify such features in any
presented input vector.

Marcin Pluciński Artificial neural networks and their applications 119 / 252

Unsupervised learning – tasks

The kind of task salved by the network depends on the network structure
and its learning method.

Similarity determination – realised by the network with a single
output neuron whose value shows how much an input sample is
similar to the pattern memorised during the learning process.

Classification – the network has a number of output neurons equal
to the amount of recognised classes. The input sample is assigned
to a specific class. The task of the learning process is to divide
samples similar to each other into classes and to assign each class
to the one output neuron.

The search for the archetyp – the network works in a similar way
to the classification case, but on the output we get a pattern
typical to the class.

Marcin Pluciński Artificial neural networks and their applications 120 / 252

Unsupervised learning – tasks

The kind of task salved by the network depends on the network structure
and its learning method.

Coding – the output vector is the coded version of the pattern
typical to the class.

Principal component analysis (PCA) – the network has a certain
number of output neurons, and each neuron specifies the similarity
of the input sample with respect to the principal components
(most important features).

Creating maps of features – output layer neurons are geometrically
arranged (e.g. in the form of a 2-dimensional array). During the
presentation of the input sample only 1 output is activated. The
idea of its operation assumes that similar input samples generate
the activity of geometrically close neurons. So, the output layer is
a kind of the topographic map of the input data features.

Marcin Pluciński Artificial neural networks and their applications 121 / 252

Hebb rule

One of the first rules of unsupervised neuron learning was described by
Donald Hebb. This rule was based on the phenomenon of the formation
of conditioned reflexes which are acquired by humans and animals.

If a neuron A is cyclically stimulated by a neuron B, then it becomes
more sensitive to stimulation.

If we denote by φA and φB the states of activity of the neurons A and B,
and by wAB – weight of its connection, then the above rule can be
described in the form:

wAB(k + 1) = wAB(k) + η · φA · φB

Marcin Pluciński Artificial neural networks and their applications 122 / 252

Hebb rule

One of the first rules of unsupervised neuron learning was described by
Donald Hebb. This rule was based on the phenomenon of the formation
of conditioned reflexes which are acquired by humans and animals.

If a neuron A is cyclically stimulated by a neuron B, then it becomes
more sensitive to stimulation.

If we denote by φA and φB the states of activity of the neurons A and B,
and by wAB – weight of its connection, then the above rule can be
described in the form:

wAB(k + 1) = wAB(k) + η · φA · φB

Marcin Pluciński Artificial neural networks and their applications 122 / 252

Data normalisation

Normalisation

Scaling of the each input in such a way that it takes the value from the
same and assumed interval [l , u]. Most commonly, the normalisation
scales values to the range [0, 1] or [−1, 1].

xnorm = (x − xmin) · u − l

xmax − xmin
+ l

where:

x – original value,

xnorm – value after normalisation,

xmin, xmax – minimum and maximum value of the data.

Marcin Pluciński Artificial neural networks and their applications 123 / 252

Data normalisation

% normalisation of the vector x
% new_min, new_max - new range of the vector values (by default [0,1])
% x_norm - vector after normalisation
% min_x, max_x - minimum and maximum value in the original vector

function [x_norm, min_x, max_x] = normalisation(x, new_min, new_max)

if nargin < 2
new_min = 0;
new_max = 1;

end
if nargout > 1
min_x = min(x);
max_x = max(x);

end

x_norm = (x - min(x))*(new_max-new_min)/(max(x)-min(x)) + new_min;

Marcin Pluciński Artificial neural networks and their applications 124 / 252

>> x = 0:10
x =

0 1 2 3 4 5 6 7 8 9 10

>> x1 = normalisation(x)
x1 =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

>> x2 = normalisation(x,-10,10)
x2 =
-10 -8 -6 -4 -2 0 2 4 6 8 10

>> [x2, x_low, x_high] = normalisation(x,-100,100)
x2 =
-100 -80 -60 -40 -20 0 20 40 60 80 100
x_low =

0
x_high =
10

Marcin Pluciński Artificial neural networks and their applications 125 / 252

Normalisation of the Z axis

In unsupervised learning, a frequent requirement is the same length of
training vectors.

1 In the first step, all inputs are scaled to the interval [−1, 1].

2 In the second step, we add an additional variable whose value is a
function of the real input values. This value is calculated in such a
way that after normalisation, the vector length is equal to 1.

We calculate:

x̂i = f · xi , i = 1 . . . n, f =
1√
n

x̂n+1 = f ·
√
n − d2, d =

√√√√ n∑
i=1

x2
i

Marcin Pluciński Artificial neural networks and their applications 126 / 252

Normalisation of the Z axis

In unsupervised learning, a frequent requirement is the same length of
training vectors.

1 In the first step, all inputs are scaled to the interval [−1, 1].

2 In the second step, we add an additional variable whose value is a
function of the real input values. This value is calculated in such a
way that after normalisation, the vector length is equal to 1.

We calculate:

x̂i = f · xi , i = 1 . . . n, f =
1√
n

x̂n+1 = f ·
√
n − d2, d =

√√√√ n∑
i=1

x2
i

Marcin Pluciński Artificial neural networks and their applications 126 / 252

Normalisation of the Z axis – example

x1 x2

−2 −2
−1 −1
0 0
1 1
2 2

Marcin Pluciński Artificial neural networks and their applications 127 / 252

Normalisation of the Z axis – example

x̂i = f · xi , i = 1 . . . n, f =
1√
n

x̂n+1 = f ·
√
n − d2, d =

√√√√ n∑
i=1

x2
i

x1 x2 xnorm1 xnorm2 d2 x̂1 x̂2 x̂3

−2 −2 −1 −1 2 − 1√
2

− 1√
2

0

−1 −1 −0.5 −0.5 1
2 − 1

2
√

2
− 1

2
√

2

√
3

2

0 0 0 0 0 0 0 1

1 1 0.5 0.5 1
2

1
2
√

2
1

2
√

2

√
3

2

2 2 1 1 2 1√
2

1√
2

0

Marcin Pluciński Artificial neural networks and their applications 128 / 252

Normalisation of the Z axis – example

Marcin Pluciński Artificial neural networks and their applications 129 / 252

Grossberg rule

Let’s assume that we have only one linear neuron.

Next, let’s assume that we have only one learning sample x.

Weights will be modified according to the rule:

w(k + 1) = w(k) + η · (x−w(k))

Marcin Pluciński Artificial neural networks and their applications 130 / 252

Grossberg rule

w(k + 1) = w(k) + η · (x−w(k))

Marcin Pluciński Artificial neural networks and their applications 131 / 252

Grossberg rule

The neuron output is the scalar product of the input x and the vector of
weights w.

y = wT · x = |w| · |x| · cos(α)

where: α is the angle between vectors x and w.

For normalised vectors x and w, an output depends only on the angle α.

The neuron is most stimulated, when the input vector x is similar
to the weights vector w.

During learning, weights become similar to the presented sample.

Marcin Pluciński Artificial neural networks and their applications 132 / 252

Grossberg rule

The neuron output is the scalar product of the input x and the vector of
weights w.

y = wT · x = |w| · |x| · cos(α)

where: α is the angle between vectors x and w.

For normalised vectors x and w, an output depends only on the angle α.

The neuron is most stimulated, when the input vector x is similar
to the weights vector w.

During learning, weights become similar to the presented sample.

Marcin Pluciński Artificial neural networks and their applications 132 / 252

Grossberg rule

Let’s assume that we have only one linear neuron.

We have a lot of similar learning samples x.

Weights will be modified according to the rule:

w(k + 1) = w(k) + η · (x−w(k))

Marcin Pluciński Artificial neural networks and their applications 133 / 252

Grossberg rule

Let’s assume that we have only one linear neuron.

We have a lot of similar learning samples x.

Weights will be modified according to the rule:

w(k + 1) = w(k) + η · (x−w(k))

Marcin Pluciński Artificial neural networks and their applications 133 / 252

Grossberg rule

During learning, weights become similar to the average presented
sample.

The neuron is most stimulated, when the input vector x is similar
to the weights vector w.

Trained neuron is able to determine the similarity of the input sample to
the memorised pattern.

Marcin Pluciński Artificial neural networks and their applications 134 / 252

Self-Organising Networks

The network consists of a single layer of linear neurons.

The weights vector has the same size as the input vector.

Each neuron represents one class (cluster) of data.

During learning, neurons compete with each other for the
modification of weights.

Marcin Pluciński Artificial neural networks and their applications 135 / 252

Competitive learning – WTA

Weights of the most stimulated neuron will be modified according to
Grossberg rule:

w(k + 1) = w(k) + η(k) · (x−w(k))

In this way, each neuron will be learnt only with these samples whose
values are similar to its weights, and it means that they belong to the
class it represents.

Such strategy will be called Winner Takes All (WTA) learning strategy.

Marcin Pluciński Artificial neural networks and their applications 136 / 252

Competitive learning – WTA

In each learning step, only weights of the winner neuron wj∗ are
modified.

The winner neuron is determined as:

j∗ = arg min
j=1...m

d(x,wj)

where: d – is a measure of the distance between vectors x and wj .

Marcin Pluciński Artificial neural networks and their applications 137 / 252

Distance measures

Scalar product:

d(x,w) = 1− x ·w = 1− ||x|| · ||w|| · cos(x,w)

Euclidean measure:

d(x,w) = ||x−w|| =

√√√√ n∑
i=1

(xi − wi)2

L1 (Manhattan) distance measure:

d(x,w) =
n∑

i=1

|xi − wi |

L∞ distance measure:

d(x,w) = max
i
|xi − wi |

Marcin Pluciński Artificial neural networks and their applications 138 / 252

Rate of learning coefficient η

Rate of learning coefficient η should be decreased during learning.

Linearly:

η(k) = ηmin + (ηmax − ηmin)
kmax − k

kmax

Exponentially:

η(k) = ηmax

(
ηmin

ηmax

) k

kmax

Marcin Pluciński Artificial neural networks and their applications 139 / 252

Competitive learning – example

Learning data:

x1 x2

1 1
3 3
1 2

2.5 2
2 1
3 2

After normalisation:

x1 x2

−1 −1
1 1
−1 0
0.5 0
0 −1
1 0

Marcin Pluciński Artificial neural networks and their applications 140 / 252

Competitive learning – example

Data after normalisation:

x1 x2

−1 −1
1 1
−1 0
0.5 0
0 −1
1 0

Initial weights:

w1(0) =

[
1

-0.5

]
w2(0) =

[
0

0.5

]

η = 0.2

Marcin Pluciński Artificial neural networks and their applications 141 / 252

Competitive learning – example

Learning with constant value of η = 0.2.

Marcin Pluciński Artificial neural networks and their applications 142 / 252

Competitive learning – example

Learning with value of η decreasing from 0.2 to 0 during learning.

Marcin Pluciński Artificial neural networks and their applications 143 / 252

Competitive learning – example

Learning of the network with 5 neurons.

Marcin Pluciński Artificial neural networks and their applications 144 / 252

Competitive learning – example

Learning of the network with 3 neurons.

Marcin Pluciński Artificial neural networks and their applications 145 / 252

Competitive learning – example

Learning of the network with 5 neurons.

Marcin Pluciński Artificial neural networks and their applications 146 / 252

Competitive learning – WTM

Using Kohonen rule, we modify the weights of all neurons:

wj(k + 1) = wj(k) + η(k) · G (wj ,wj∗) · (x−w(k))

Such strategy will be called Winner Takes Most (WTM) learning strategy.

G (wj ,wj∗) – the neighbourhood function which determines the degree of
similarity between the neuron no j to the winner neuron no j∗.

Marcin Pluciński Artificial neural networks and their applications 147 / 252

Neighbourhood functions

WTA

G (wj ,wj∗) =

{
1 for j = j∗

0 for other

Gauss neighbourhood

G (wj ,wj∗) = exp

(
−d2(wj ,wj∗)

2λ2

)

‘Mexican hat’ function

G (wj ,wj∗) =


1 for d(wj ,wj∗) = 0

sin(λ·d(wj ,wj∗))
λ·d(wj ,wj∗ for |d(wj ,wj∗)| ∈ (0, 2π/λ)

0 for other

Marcin Pluciński Artificial neural networks and their applications 148 / 252

Neighbourhood functions

‘Mexican hat’ function.

Marcin Pluciński Artificial neural networks and their applications 149 / 252

Neighbourhood functions

The width of the neighbourhood function should decrease during
learning.

Decreasing of the λ value can be realised e.g. exponentially:

λ(k) = λmax

(
λmin

λmax

) k

kmax

Marcin Pluciński Artificial neural networks and their applications 150 / 252

WTA – WTM

Changing of the position of neurons in the WTA and WTM strategy.

Marcin Pluciński Artificial neural networks and their applications 151 / 252

Kohonen networks

Topology

Graph structure defining arrangement and neighbourhood of neurons.

Similarity measures

Metrical – similarity defines the geometry of the input space.

Topological – similarity of vectors is defined by the network
topology.

Marcin Pluciński Artificial neural networks and their applications 152 / 252

Topology examples

One dimensional – linear.

Marcin Pluciński Artificial neural networks and their applications 153 / 252

Topology examples

Two dimensional – rectangular.

Marcin Pluciński Artificial neural networks and their applications 154 / 252

Topology examples

Two dimensional – hexagonal.

Marcin Pluciński Artificial neural networks and their applications 155 / 252

Kohonen networks

When the topology is imposed onto the network, we consider the
distance between neurons in the graph defining the topology, during
determination of the neighbourhood.

Rectangular neighbourhood

G (wj ,wj∗) =

{
1 for d(j , j∗) ≤ λ
0 for other

Gauss neighbourhood

G (wj ,wj∗) = exp

(
−d2(j , j∗)

2λ2

)

Marcin Pluciński Artificial neural networks and their applications 156 / 252

Kohonen networks

Changing of neurons positions for the network with linear topology and
width of a rectangular neighbourhood equal to λ = 1.

Marcin Pluciński Artificial neural networks and their applications 157 / 252

Kohonen networks

The network with topology create so-called feature maps.

After presentation of the input sample only 1 output is activated.

Similar input samples should generate activity of close (in the
graph) neurons.

The output layer is thus a kind of topographic map of input data
features.

Marcin Pluciński Artificial neural networks and their applications 158 / 252

The quality of self-organising networks

The quality of the self-organising network can be determined by formula:

q =
L∑

p=1

||xp −wj∗ ||

where: wj∗ – weights of the winner neuron for the sample x.

Marcin Pluciński Artificial neural networks and their applications 159 / 252

Kohonen networks – examples

Linear topology, 5 neurons.
Marcin Pluciński Artificial neural networks and their applications 160 / 252

Kohonen networks – examples

Linear topology, 5 neurons.
Marcin Pluciński Artificial neural networks and their applications 161 / 252

Kohonen networks – examples

Linear topology, 15 neurons.
Marcin Pluciński Artificial neural networks and their applications 162 / 252

Kohonen networks – examples

Linear topology, 15 neurons.
Marcin Pluciński Artificial neural networks and their applications 163 / 252

Kohonen networks – examples

Rectangular topology, grid of neurons 2 by 3.
Marcin Pluciński Artificial neural networks and their applications 164 / 252

Kohonen networks – examples

Hexagonal topology, grid of neurons 2 by 3.
Marcin Pluciński Artificial neural networks and their applications 165 / 252

Kohonen networks – examples

Rectangular topology, grid of neurons 2 by 3.
Marcin Pluciński Artificial neural networks and their applications 166 / 252

Kohonen networks – examples

Hexagonal topology, grid of neurons 2 by 3.
Marcin Pluciński Artificial neural networks and their applications 167 / 252

Kohonen networks – examples

Hexagonal topology, grid of neurons 2 by 3.
Marcin Pluciński Artificial neural networks and their applications 168 / 252

Kohonen networks – examples

Rectangular topology, grid of neurons 4 by 4.
Marcin Pluciński Artificial neural networks and their applications 169 / 252

Kohonen networks – examples

Hexagonal topology, grid of neurons 4 by 4.
Marcin Pluciński Artificial neural networks and their applications 170 / 252

Kohonen networks – examples

Rectangular topology, grid of neurons 5 by 5.
Marcin Pluciński Artificial neural networks and their applications 171 / 252

Kohonen networks – examples

Hexagonal topology, grid of neurons 5 by 5.
Marcin Pluciński Artificial neural networks and their applications 172 / 252

Recurrent neural networks

Marcin Pluciński Artificial neural networks and their applications 173 / 252

Recurrent neural networks

General informations

There are feedback connections in networks – outputs of neurons
are connected to inputs.

In the network, signal ‘oscillates’ between the output and the input
to achieve a certain convergence criterion – and then it is given to
the output.

Recurrent neural networks are nonlinear dynamic systems from the
point of view of systems theory.

Tasks

Autoassociative memory.

Optimization.

Marcin Pluciński Artificial neural networks and their applications 174 / 252

Recurrent neural networks

General informations

There are feedback connections in networks – outputs of neurons
are connected to inputs.

In the network, signal ‘oscillates’ between the output and the input
to achieve a certain convergence criterion – and then it is given to
the output.

Recurrent neural networks are nonlinear dynamic systems from the
point of view of systems theory.

Tasks

Autoassociative memory.

Optimization.

Marcin Pluciński Artificial neural networks and their applications 174 / 252

Discrete Hopfield network
Main features

One layer (virtual) of neurons with feedback connections.

No of neurons = no of inputs = no of outputs = n.

Square weight matrix of size n × n.

Marcin Pluciński Artificial neural networks and their applications 175 / 252

Discrete Hopfield network

Each neuron determines its output signal on the base of formula:

φi (k) =
n∑

j=1

wij · yj + bi

yi (k + 1) =

 1 for φi (k) > 0
yi (k) for φi (k) = 0
0 for φi (k) < 0

where:

yi (k) – output of the neuron no i in moment k ,

wij – weight of the connection between output of the neuron no j
and input of the neuron no i ,

bi – threshold of the neuron no i (often not used!).

Marcin Pluciński Artificial neural networks and their applications 176 / 252

Discrete Hopfield network

There are feedback connections in the network. Output of each
neuron is connected to inputs of all other neurons. There is no
connection between the output and the input of the same neuron:

wii = 0 .

The weight matrix is symmetric:

wij = wji .

Since each neuron is connected with each other, the network has
no layers.

Marcin Pluciński Artificial neural networks and their applications 177 / 252

Discrete Hopfield network – behavior

At the beginning moment k = 0, we connect input signals
xi ∈ {0, 1} to the neuron, and in that way we define the beginning
state of the network.

yi (0) = xi

In this moment, inputs are disconnected and an iterative process
of state updating begins in the network, according to formulas:

φi (k) =
n∑

j=1

wij · yj + bi

yi (k + 1) =

 1 for φi (k) > 0
yi (k) for φi (k) = 0
0 for φi (k) < 0

Marcin Pluciński Artificial neural networks and their applications 178 / 252

Discrete Hopfield network – behavior

Changes of the state are realised in discrete moments of time.

The network works asynchronously – in one moment of time only
one output is actualised (usually chosen at random).

After finished number of iterations the network reaches a stable
state:

yi (k + 1) = yi (k) , ∀i

At this moment, the (so called) recovery process ends and the
state of the network is transmitted to the output.

Marcin Pluciński Artificial neural networks and their applications 179 / 252

Discrete Hopfield network – energy function

The Hopfield network has defined, so called, energy function.

There is defined a certain value of this function for each network
state (defined by output vector y).

The energy function is bounded on the bottom and non-growing
during state changes – it means that during the recovery process
the energy function value decreases or remains unchanged.

Stable state, achieved at the end of the recovery process,
corresponds to a local minimum of the energy function.

Energy function can be described by formula:

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

Marcin Pluciński Artificial neural networks and their applications 180 / 252

Discrete Hopfield network – energy function

The Hopfield network has defined, so called, energy function.

There is defined a certain value of this function for each network
state (defined by output vector y).

The energy function is bounded on the bottom and non-growing
during state changes – it means that during the recovery process
the energy function value decreases or remains unchanged.

Stable state, achieved at the end of the recovery process,
corresponds to a local minimum of the energy function.

Energy function can be described by formula:

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

Marcin Pluciński Artificial neural networks and their applications 180 / 252

Discrete Hopfield network – energy function

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

Let’s assume that the state of the neuron i changes in moment k
according to formula:

yi (k + 1) = yi (k) + ∆yi (k)

The network works asynchronously, so the state of other neurons is
unchanged, i.e.:

yj(k + 1) = yj(k) , for j 6= i

The change of energy can be calculated as:

∆E (k) = E (y(k+1))−E (y(k)) = −∆yi (k)·

 n∑
j=1

wijyj + bi

 = −∆yi (k)·φi (k)

Marcin Pluciński Artificial neural networks and their applications 181 / 252

Discrete Hopfield network – energy function

∆E (k) = E (y(k+1))−E (y(k)) = −∆yi (k)·

 n∑
j=1

wijyj + bi

 = −∆yi (k)·φi (k)

If φi (k) = 0 than the change of energy equals 0.

Other possible cases are considered in the table.

yi (k + 1) yi (k) ∆yi (k) φi (k) ∆E (k)

0 0 0 − 0
0 1 −1 − −
1 0 1 + −
1 1 0 + 0

Therefore, there is always:
∆E (k) ≤ 0

E (y(k + 1)) ≤ E (y(k))

Marcin Pluciński Artificial neural networks and their applications 182 / 252

Discrete Hopfield network – energy function

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

It can be noticed that the energy function is bounded on the bottom,
because:

|E (y)| ≤ 1
2

n∑
i=1

n∑
j=1

|wij |+
n∑

i=1

|bi |

Because a monotonic and limited sequence must be convergent, the
value E (y) will tend towards a certain finite value Emin.

Marcin Pluciński Artificial neural networks and their applications 183 / 252

Discrete Hopfield network – energy function

E (y) = −1
2

yTWy + bTy = −1
2

n∑
i=1

n∑
j=1

wijyiyj +
n∑

i=1

biyi

It can be noticed that the energy function is bounded on the bottom,
because:

|E (y)| ≤ 1
2

n∑
i=1

n∑
j=1

|wij |+
n∑

i=1

|bi |

Because a monotonic and limited sequence must be convergent, the
value E (y) will tend towards a certain finite value Emin.

Marcin Pluciński Artificial neural networks and their applications 183 / 252

Discrete Hopfield network – energy function

The set of energy function values is finite – it results from the
fact, that its domain is finite because yi ∈ {0, 1}.

It means that the set of possible energy changes ∆E is also finite.

Possible energy changes can not be infinitely small (what could
result in an infinitely long setting up of the state).

Finally, the energy reaches a steady state Emin in finite number of
steps kmax .

The state y in which E (y) = Emin (local minimum) is the stable
state.

Marcin Pluciński Artificial neural networks and their applications 184 / 252

Discrete Hopfield network – energy function

The beginning state of the network is defined by the chose of y(0).

If it is not a stable state, in the course of subsequent iterations
(recovery phase), y changes in such a way that the energy
function value decreases until reaching the local minimum.

Marcin Pluciński Artificial neural networks and their applications 185 / 252

Discrete Hopfield network – energy function

Stable states are called attractors.

To each attractor, we can assign a set of initial states y(0), which
initiate an evolution of the network state ending in it. Such set is
called a basin of attraction of the attractor.

The choice of connection weights between neurons has a decisive
impact for the number of attractors, their mutual distance and the
corresponding value of the energy function (depth of basins).

Marcin Pluciński Artificial neural networks and their applications 186 / 252

Discrete Hopfield network – energy function

The shape of attractions areas of the recurrent network: a) contour plot,
b) mapping of directions of energy function changes during the recovery

phase.

Marcin Pluciński Artificial neural networks and their applications 187 / 252

Autoassociative memory

The concept of such a memory is associated with one of the basic
functions of the brain. For example, straining attention we can
recognize unclear speech, read unreadable handwriting, guess the
entire word in a crossword, seeing only some of letters.

Such process is called association. This is done by recovering the
entire available information on the base of fragments or
information that is distorted.

Marcin Pluciński Artificial neural networks and their applications 188 / 252

Autoassociative memory

Let’s assume that we have a set of M different patterns:

{x1, x2, . . . , xM} ⊂ Rn.

Autoassociative memory connected with this set is the system
implementing a mapping:

F : Rn → Rn ,

such that:
F (xi) = xi , for i = 1 . . .M

and:
F (x) = xS ,

where: xS is the most similar to x from all M patterns.

Marcin Pluciński Artificial neural networks and their applications 189 / 252

Autoassociative memory

Marcin Pluciński Artificial neural networks and their applications 190 / 252

Similarity degree
Similarity degree for two vectors x and y can be defined on the base of
Euclidean measure:

dE (x, y) =

√√√√ n∑
i=1

(xi − yi)2 for x, y ∈ Rn

As, analysed here vectors belong to the Hamming space:

Hn = {x ∈ Rn : xi ∈ {0, 1}} ,

i.e. set of n-dimensional vectors with elements 0 and 1, we can apply, so
called, Hamming distance measure dH . For vectors x and y, it is equal to
the number of different elements.

For:
x = [1, 0, 0, 1, 0] i y = [1, 0, 1, 1, 1]

we have:
dH(x, y) = 2

Marcin Pluciński Artificial neural networks and their applications 191 / 252

Similarity degree
Similarity degree for two vectors x and y can be defined on the base of
Euclidean measure:

dE (x, y) =

√√√√ n∑
i=1

(xi − yi)2 for x, y ∈ Rn

As, analysed here vectors belong to the Hamming space:

Hn = {x ∈ Rn : xi ∈ {0, 1}} ,

i.e. set of n-dimensional vectors with elements 0 and 1, we can apply, so
called, Hamming distance measure dH . For vectors x and y, it is equal to
the number of different elements.

For:
x = [1, 0, 0, 1, 0] i y = [1, 0, 1, 1, 1]

we have:
dH(x, y) = 2

Marcin Pluciński Artificial neural networks and their applications 191 / 252

Similarity degree
Similarity degree for two vectors x and y can be defined on the base of
Euclidean measure:

dE (x, y) =

√√√√ n∑
i=1

(xi − yi)2 for x, y ∈ Rn

As, analysed here vectors belong to the Hamming space:

Hn = {x ∈ Rn : xi ∈ {0, 1}} ,

i.e. set of n-dimensional vectors with elements 0 and 1, we can apply, so
called, Hamming distance measure dH . For vectors x and y, it is equal to
the number of different elements.

For:
x = [1, 0, 0, 1, 0] i y = [1, 0, 1, 1, 1]

we have:
dH(x, y) = 2

Marcin Pluciński Artificial neural networks and their applications 191 / 252

Hopfield network as an autoassociative memory

Described property of the Hopfield network (existence of attractors
to which the state of the network is evolving from the given initial
state) allows its application as an autoassociative memory.

The shape of the energy function plot (and the location of
attractors) depends on network weights.

So, it is enough to choose weights in such a way that each pattern
is one of attractors, and its basin of attraction is as wide and as
deep as possible to assure associations between initial and final
states.

Marcin Pluciński Artificial neural networks and their applications 192 / 252

Learning of the Hopfield network

For originally described network, Hopfield proposed the following method
of weights calculation:

wij =

{ ∑M
m=1(2x (m)

i − 1)(2x (m)
j − 1) for i 6= j

0 for i = j

where:

M – number of patterns,

x
(m)
i – input no i for pattern no m.

Marcin Pluciński Artificial neural networks and their applications 193 / 252

Learning of the Hopfield network

For discrete bipolar network (state described with −1 and 1) weights can
be calculated with other formulas.

If we have only one pattern:

x =

 x1
...
xn

 , xi ∈ {−1, 1}

weights can be calculated as (Hebbian rule):

wij =

{
1
n · xi · xj for i 6= j
0 for i = j

or in a matrix form:

W =
1
n

(x · xT − 1)

Marcin Pluciński Artificial neural networks and their applications 194 / 252

Learning of the Hopfield network

If we have M patterns:

x =

 x
(1)
1 x

(2)
1 . . . x

(M)
1

... . . .
...

x
(1)
n x

(2)
n . . . x

(M)
n

 , xi ∈ {−1, 1}

weights can be calculated as (Hebbian rule):

wij =

{
1
n ·
∑M

m=1 x
(m)
i · x (m)

j for i 6= j

0 for i = j

or in a matrix form:

W =
1
n

(X · XT − 1M)

Marcin Pluciński Artificial neural networks and their applications 195 / 252

Learning of the Hopfield network

If we have M patterns:

X =

 x
(1)
1 x

(2)
1 . . . x

(M)
1

... . . .
...

x
(1)
n x

(2)
n . . . x

(M)
n

 , xi ∈ {−1, 1}

weights can be also calculated with the application of pseudo-inverse
matrix:

W = X(XTX)−1XT

Marcin Pluciński Artificial neural networks and their applications 196 / 252

Capacity of the Hopfield network

Capacity of the network learnt with Heebian rule equals 0.138 · n
(where n – number of neurons).

Capacity of the network learnt with pseudo-inverse method equals
n − 1.

Marcin Pluciński Artificial neural networks and their applications 197 / 252

Capacity of the Hopfield network

Caution!

If the network remembers patterns {x1, x2, . . . , xM} it also
remembers (and can restore) their negations {x1, x2, . . . , xM}.

So, if the set of patterns consists of only one pattern, the network
has 2 attractors connected with the pattern and its negation.

For greater number of patterns, we have attractors located in
patterns, their negations, and conjunctions of patterns and
negations: (x1 AND x2, x1 AND x2, ...).

If we have many patterns, there will be also many spurious (false)
attractors which are not connected with any pattern. The
disadvantage of the network is also the fact that you can not
guarantee that all patterns become attractors.

Marcin Pluciński Artificial neural networks and their applications 198 / 252

Hopfield network – example

Let’s assume that we have only 1 pattern (M = 1):

x = [1 0 1 0]T

Weights are calculated with formula:

wij =

{ ∑M
m=1(2x (m)

i − 1)(2x (m)−1
j) for i 6= j

0 for i = j

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0



Marcin Pluciński Artificial neural networks and their applications 199 / 252

Hopfield network – example

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0


Let’s check the network behavior for input:

xt = [1 0 1 0]T = y(0)

Activity of neurons:

φi (k) =
n∑

j=1

wij · yj(k)

As the result we get:

φ1(0) = 1
φ2(0) = −2
φ3(0) = 1
φ4(0) = −2

⇒

y1(1) = 1
y2(1) = 0
y3(1) = 1
y4(1) = 0

Marcin Pluciński Artificial neural networks and their applications 200 / 252

Hopfield network – example

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0


Let’s check the network behavior for input:

xt = [1 0 0 0]T = y(0)

Activity of neurons:

φi (k) =
n∑

j=1

wij · yj(k)

As the result we get:

φ1(0) = 0
φ2(0) = −1
φ3(0) = 1
φ4(0) = −1

⇒

y1(1) = 1
y2(1) = 0
y3(1) = 1
y4(1) = 0

Marcin Pluciński Artificial neural networks and their applications 201 / 252

Hopfield network – example

W =


0 −1 1 −1
−1 0 −1 1

1 −1 0 −1
−1 1 −1 0


Let’s check the network behavior for input:

xt = [0 1 0 1]T = y(0)

Activity of neurons:

φi (k) =
n∑

j=1

wij · yj(k)

As the result we get:

φ1(0) = −2
φ2(0) = 1
φ3(0) = −2
φ4(0) = 1

⇒

y1(1) = 0
y2(1) = 1
y3(1) = 0
y4(1) = 1

Marcin Pluciński Artificial neural networks and their applications 202 / 252

Hopfield network – character recognition

36 learning patterns – matrix 20× 16.

Marcin Pluciński Artificial neural networks and their applications 203 / 252

Hopfield network – character recognition

Each character is represented by a matrix of size 20× 16 filled
with numbers −1 and 1.

Each character matrix is converted into vector (function
reshape(M,new row,new col) in MATLAB).

 • · · · •
...

...
• · · · •


20×16

−→


•
•
...
•


320×1

In that way, we get the matrix of patterns:

X = [x(1), x(2), . . . , x(M)]

Marcin Pluciński Artificial neural networks and their applications 204 / 252

Hopfield network – character recognition

Marcin Pluciński Artificial neural networks and their applications 205 / 252

Hopfield network – character recognition

Marcin Pluciński Artificial neural networks and their applications 206 / 252

Hopfield network – character recognition

Marcin Pluciński Artificial neural networks and their applications 207 / 252

Hopfield network – character recognition

Marcin Pluciński Artificial neural networks and their applications 208 / 252

Hopfield network – character recognition

Marcin Pluciński Artificial neural networks and their applications 209 / 252

Hopfield network – character recognition

Marcin Pluciński Artificial neural networks and their applications 210 / 252

Interpolation of time series

Tasks:
1 prediction,
2 signal filtration.

Marcin Pluciński Artificial neural networks and their applications 211 / 252

Interpolation of time series

Tasks:
1 prediction,
2 signal filtration.

Marcin Pluciński Artificial neural networks and their applications 211 / 252

Interpolation of time series

1 We assume that the signal can be described by a deterministic
model.

2 We also accept the ‘naive’ assumption that the signal value in a
given, discrete moment of time k depends only on signal values in
earlier moments: k − 1, k − 2, e.t.c.

3 The basis for this assumption is the application of the signal model
in the form of a difference equation.

Marcin Pluciński Artificial neural networks and their applications 212 / 252

Signal model – example

Suppose we have a homogeneous, linear differential equation in the form:

ÿ + 2ẏ + 2y = 0

The equation has a general solution:

y = e−t · (C1 cos(t) + C2 sin(t))

For example, for initial conditions: y(0) = 1 i ẏ(0) = 1, we can find
C1 = 1 i C2 = 2, and we have:

y = e−t · (cos(t) + 2 sin(t))

Marcin Pluciński Artificial neural networks and their applications 213 / 252

Signal model – example

Suppose we have a homogeneous, linear differential equation in the form:

ÿ + 2ẏ + 2y = 0

The equation has a general solution:

y = e−t · (C1 cos(t) + C2 sin(t))

For example, for initial conditions: y(0) = 1 i ẏ(0) = 1, we can find
C1 = 1 i C2 = 2, and we have:

y = e−t · (cos(t) + 2 sin(t))

Marcin Pluciński Artificial neural networks and their applications 213 / 252

Signal model – example

y = e−t · (cos(t) + 2 sin(t))

Marcin Pluciński Artificial neural networks and their applications 214 / 252

Signal model – example

Differential equation ÿ + 2ẏ + 2y = 0 can therefore be treated as a
continuous model of the signal that we can see in the plot.

Marcin Pluciński Artificial neural networks and their applications 215 / 252

Signal model – example

In computer modeling, the differential equation ÿ + 2ẏ + 2y = 0 can be
discretized.

Then, we will get a difference equation:

y(k) = y(k − 1) · 2 + 2T
1 + 2T + 2T 2 − y(k − 2) · 1

1 + 2T + 2T 2

The form and parameters of the equation depend on the applied
discretization method. Parameters also depend on the used sampling
step T .

Marcin Pluciński Artificial neural networks and their applications 216 / 252

Signal model – example

Simulation of the model described by the difference equation:

y(k) = y(k − 1) ·
2 + 2T

1 + 2T + 2T 2
− y(k − 2) ·

1

1 + 2T + 2T 2

for the sampling step T = 0.5 and initial conditions y(0) = 1, y(1) = 0.

Marcin Pluciński Artificial neural networks and their applications 217 / 252

Signal model – example

Marcin Pluciński Artificial neural networks and their applications 218 / 252

Signal model – example

Discretization can significantly change the behavior of the model.The plot shows the
simulation of the model described by the difference equation:

y(k) = y(k − 1) ·
2 + 2T

1 + 2T + 2T 2
− y(k − 2) ·

1

1 + 2T + 2T 2

for the sampling step T = 0.1 and initial conditions y(0) = 1, y(1) = 0.

Marcin Pluciński Artificial neural networks and their applications 219 / 252

Signal model – example

Difference equation:

y(k) = y(k − 1) · 2 + 2T
1 + 2T + 2T 2 − y(k − 2) · 1

1 + 2T + 2T 2

can be presented more generally in the form:

y(k) = w1 · y(k − 1) + w2 · y(k − 2)

where: w1 = 2+2T
1+2T+2T 2 i w2 = 1

1+2T+2T 2

Such an equation can be easily modeled by one linear neuron!

Marcin Pluciński Artificial neural networks and their applications 220 / 252

Signal model

Using more complex networks, we can model any (linear or non-linear)
difference equation with a general form:

y(k) = F (y(k − 1), y(k − 2), . . . y(k − n))

n – determines the size of the time window, i.e. we will use the n
previous signal values to predict the current value.

The neural network will have n inputs (previous signal values) and one
output (predicted actual value).

Marcin Pluciński Artificial neural networks and their applications 221 / 252

Data preparation

Let us assume that we know the stock prices of a certain company:

Day 1 56
Day 2 58
Day 3 55
Day 4 53
Day 5 52
Day 6 50

Marcin Pluciński Artificial neural networks and their applications 222 / 252

Data preparation

Day 1 56
Day 2 58
Day 3 55
Day 4 53
Day 5 52
Day 6 50

If we assume a size of the window
equal 3, training samples will take
the form:

Sample 1: 56 58 55 53
Sample 2: 58 55 53 52
Sample 3: 55 53 52 50

The network learned with their help will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3))

Marcin Pluciński Artificial neural networks and their applications 223 / 252

Data preparation

Day 1 56
Day 2 58
Day 3 55
Day 4 53
Day 5 52
Day 6 50

If we assume a size of the window
equal 3, training samples will take
the form:

Sample 1: 56 58 55 53
Sample 2: 58 55 53 52
Sample 3: 55 53 52 50

The network learned with their help will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3))

Marcin Pluciński Artificial neural networks and their applications 223 / 252

Examples
The signal is given:
y = sin(t) + cos(t) + sin(3t) · cos(3t) + sin(5t) + cos(5t) + 0.3 sin(50t)

Marcin Pluciński Artificial neural networks and their applications 224 / 252

Examples

We choose the size of the time window n = 4.

The network will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3), y(k − 4))

We take 6 neurons on the hidden layer.

The hidden layer has hyperbolic tangent activation function, the
output layer is linear.

We prepare learning data as shown before.

Marcin Pluciński Artificial neural networks and their applications 225 / 252

Examples

Learning signal.

Marcin Pluciński Artificial neural networks and their applications 226 / 252

Examples

Signal modeled by the neural network.

Marcin Pluciński Artificial neural networks and their applications 227 / 252

Examples

Error of the network.

Marcin Pluciński Artificial neural networks and their applications 228 / 252

Examples

Prediction for data not used in learning. Blue line – prediction, red line –
real value.

Marcin Pluciński Artificial neural networks and their applications 229 / 252

Examples
We have data of the stock value of a certain company:

Marcin Pluciński Artificial neural networks and their applications 230 / 252

Examples

We choose the size of the time window n = 5.

The network will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), y(k − 3), y(k − 4), y(k − 5))

We take 6 neurons on the hidden layer.

The hidden layer has hyperbolic tangent activation function, the
output layer is linear.

We prepare learning data as shown before.

Marcin Pluciński Artificial neural networks and their applications 231 / 252

Examples

Learning signal.

Marcin Pluciński Artificial neural networks and their applications 232 / 252

Examples

Signal modeled by the neural network.

Marcin Pluciński Artificial neural networks and their applications 233 / 252

Examples

Error of the network.

Marcin Pluciński Artificial neural networks and their applications 234 / 252

Examples

Prediction for data not used in learning. Blue line – prediction, red line –
real value.

Marcin Pluciński Artificial neural networks and their applications 235 / 252

Examples

Learning signal – noisy sinusoid.

Marcin Pluciński Artificial neural networks and their applications 236 / 252

Examples
The signal modeled by the network. The noise filtering effect is obtained
using a simple network composed of one linear neuron.

Marcin Pluciński Artificial neural networks and their applications 237 / 252

Modeling of dynamic objects

Tasks:
1 identification,
2 control.

Marcin Pluciński Artificial neural networks and their applications 238 / 252

Modeling of dynamic objects

The general model of a dynamic object has the form of a differential
equation:

F (y (n)(t), y (n−1)(t), . . . , ẏ(t), y(t), x (m)(t), x (m−1)(t), . . . , ẋ(t), x(t)) = 0

For real objects we always have: n ≥ m.

If the object is linear, it can be described by a linear differential equation:

any
(n)(t) + an−1y

(n−1)(t) + . . .+ a1ẏ(t) + a0y(t) =

= bmx
(m)(t) + bm−1x

(m−1)(t) + . . .+ b1ẋ(t) + b0x(t)

Marcin Pluciński Artificial neural networks and their applications 239 / 252

Modeling of dynamic objects

The general model of a dynamic object has the form of a differential
equation:

F (y (n)(t), y (n−1)(t), . . . , ẏ(t), y(t), x (m)(t), x (m−1)(t), . . . , ẋ(t), x(t)) = 0

For real objects we always have: n ≥ m.

If the object is linear, it can be described by a linear differential equation:

any
(n)(t) + an−1y

(n−1)(t) + . . .+ a1ẏ(t) + a0y(t) =

= bmx
(m)(t) + bm−1x

(m−1)(t) + . . .+ b1ẋ(t) + b0x(t)

Marcin Pluciński Artificial neural networks and their applications 239 / 252

Modeling of dynamic objects

Linear differential equation:

any
(n)(t) + an−1y

(n−1)(t) + . . .+ a1ẏ(t) + a0y(t) =

= bmx
(m)(t) + bm−1x

(m−1)(t) + . . .+ b1ẋ(t) + b0x(t)

has the form of a linear difference equation after discretization:

y(k) = A1y(k − 1) + A2y(k − 2) + . . .+ Any(k − n)+

+ B0x(k) + B1x(k − 1) + . . .+ Bmx(k −m)

Such an equation can be modeled using one linear neuron.

Marcin Pluciński Artificial neural networks and their applications 240 / 252

Modeling of dynamic objects

Non-linear differential equation:

F (y (n)(t), y (n−1)(t), . . . , ẏ(t), y(t), x (m)(t), x (m−1)(t), . . . , ẋ(t), x(t)) = 0

has the form of a non-linear difference equation after discretization:

y(k) = F (y(k − 1), y(k − 2), . . . , y(k − n), x(k), x(k − 1), . . . , x(k −m))

Such equation can be modeled using a non-linear multi-layer
network.

n – determines the size of the time window for the output signal, a
m – determines the size of the time window for the input signal.

The neural network will have n + m + 1 inputs and 1 output.

Marcin Pluciński Artificial neural networks and their applications 241 / 252

Modeling of dynamic objects

Non-linear differential equation:

F (y (n)(t), y (n−1)(t), . . . , ẏ(t), y(t), x (m)(t), x (m−1)(t), . . . , ẋ(t), x(t)) = 0

has the form of a non-linear difference equation after discretization:

y(k) = F (y(k − 1), y(k − 2), . . . , y(k − n), x(k), x(k − 1), . . . , x(k −m))

Such equation can be modeled using a non-linear multi-layer
network.

n – determines the size of the time window for the output signal, a
m – determines the size of the time window for the input signal.

The neural network will have n + m + 1 inputs and 1 output.

Marcin Pluciński Artificial neural networks and their applications 241 / 252

Data preparation

Let’s assume that we want to create a model of dynamics for changes in
fuel prices depending on the dollar exchange rate. Every week we
calculate the average dollar exchange rate and the average price of fuel.

Dollar Fuel
Week 1 3.20 4.70
Week 2 3.25 4.88
Week 3 3.15 4.73
Week 4 3.10 4.65
Week 5 3.12 4.60
Week 6 3.21 4.68

Marcin Pluciński Artificial neural networks and their applications 242 / 252

Data preparation

Dollar Fuel
Week 1 3.20 4.70
Week 2 3.25 4.88
Week 3 3.15 4.73
Week 4 3.10 4.65
Week 5 3.12 4.60
Week 6 3.21 4.68

If we choose the size of the time window
for output n = 2 and for input m = 1,
learning sample will have the form:

Sample 1: 4.70 4.88 3.25 3.15 4.73
Sample 2: 4.88 4.73 3.15 3.10 4.65
Sample 3: 4.73 4.65 3.10 3.12 4.60
Sample 3: 4.65 4.60 3.12 3.21 4.68

The network learned with their help will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), x(k), x(k − 1))

Marcin Pluciński Artificial neural networks and their applications 243 / 252

Data preparation

Dollar Fuel
Week 1 3.20 4.70
Week 2 3.25 4.88
Week 3 3.15 4.73
Week 4 3.10 4.65
Week 5 3.12 4.60
Week 6 3.21 4.68

If we choose the size of the time window
for output n = 2 and for input m = 1,
learning sample will have the form:

Sample 1: 4.70 4.88 3.25 3.15 4.73
Sample 2: 4.88 4.73 3.15 3.10 4.65
Sample 3: 4.73 4.65 3.10 3.12 4.60
Sample 3: 4.65 4.60 3.12 3.21 4.68

The network learned with their help will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), x(k), x(k − 1))

Marcin Pluciński Artificial neural networks and their applications 243 / 252

Example

The behavior of the dynamic object has been modeled:

Marcin Pluciński Artificial neural networks and their applications 244 / 252

Example

The input and output signal of the object was saved:

Marcin Pluciński Artificial neural networks and their applications 245 / 252

Example

We choose the size of the time window for output n = 2 and input
m = 1.

The network will model the difference equation:

y(k) = F (y(k − 1), y(k − 2), x(k), x(k − 1))

We choose a network with one linear neuron.

We prepare learning data as before.

Marcin Pluciński Artificial neural networks and their applications 246 / 252

Example

Red line – output training signal, blue line – signal generated by the
network.

Marcin Pluciński Artificial neural networks and their applications 247 / 252

Neural network as a controller

Marcin Pluciński Artificial neural networks and their applications 248 / 252

Preparation of training data
@relation labor
@attribute ’duration’ real
@attribute ’wage-increase-first-year’ real
@attribute ’wage-increase-second-year’ real
@attribute ’wage-increase-third-year’ real
@attribute ’cost-of-living-adjustment’ {’none’,’tcf’,’tc’}
@attribute ’working-hours’ real
@attribute ’pension’ {’none’,’ret_allw’,’empl_contr’}
@attribute ’standby-pay’ real
@attribute ’shift-differential’ real
@attribute ’education-allowance’ {’yes’,’no’}
@attribute ’statutory-holidays’ real
@attribute ’vacation’ {’below_average’,’average’,’generous’}
@attribute ’longterm-disability-assistance’ {’yes’,’no’}
@attribute ’contribution-to-dental-plan’ {’none’,’half’,’full’}
@attribute ’bereavement-assistance’ {’yes’,’no’}
@attribute ’contribution-to-health-plan’ {’none’,’half’,’full’}
@attribute ’class’ {’bad’,’good’}
@data
1,5,?,?,?,40,?,?,2,?,11,’average’,?,?,’yes’,?,’good’
2,4.5,5.8,?,?,35,’ret_allw’,?,?,’yes’,11,’below_average’,?,’full’,?,’full’,’good’
?,?,?,?,?,38,’empl_contr’,?,5,?,11,’generous’,’yes’,’half’,’yes’,’half’,’good’
3,3.7,4,5,’tc’,?,?,?,?,’yes’,?,?,?,?,’yes’,?,’good’
3,4.5,4.5,5,?,40,?,?,?,?,12,’average’,?,’half’,’yes’,’half’,’good’
2,2,2.5,?,?,35,?,?,6,’yes’,12,’average’,?,?,?,?,’good’
3,4,5,5,’tc’,?,’empl_contr’,?,?,?,12,’generous’,’yes’,’none’,’yes’,’half’,’good’
3,6.9,4.8,2.3,?,40,?,?,3,?,12,’below_average’,?,?,?,?,’good’
2,3,7,?,?,38,?,12,25,’yes’,11,’below_average’,’yes’,’half’,’yes’,?,’good’
1,5.7,?,?,’none’,40,’empl_contr’,?,4,?,11,’generous’,’yes’,’full’,?,?,’good’
3,3.5,4,4.6,’none’,36,?,?,3,?,13,’generous’,?,?,’yes’,’full’,’good’
2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,’full’,?,?,’good’

Marcin Pluciński Artificial neural networks and their applications 249 / 252

Attribute types

Nominal attributes: they have no numerical value, the only
relations are ’equality’ and ’inequality’.

Order attributes: a relation of order is defined for them.

Interval attributes: a measure of the distance between attributes is
defined. The zero position in the interval scale is arbitrary.

Real attributes.

Marcin Pluciński Artificial neural networks and their applications 250 / 252

Data normalization

Normalization is not always necessary, but almost always
recommended.

Unification of the importance and significance of attributes.

Normalization of outputs (in the case of multi-output models) –
important due to minimization of error for each output.

Easier interpretation of the weight values.

Some networks (eg: RBF, Kohonen) require normalization for
correct work.

Marcin Pluciński Artificial neural networks and their applications 251 / 252

Missing attributes

Removing of samples.

Completing of attributes.

Sample splitting.

For nominal attributes - treating a missing attribute as another
possible value.

Marcin Pluciński Artificial neural networks and their applications 252 / 252

